什么是抽屉原理.docx
《什么是抽屉原理.docx》由会员分享,可在线阅读,更多相关《什么是抽屉原理.docx(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、什么是抽屉原理(1)举例桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,有的抽屉能够放一个,有的能够放两个,有的能够放五个,但最终我们会发现至少我们能够找到一个抽屉里面至少放两个苹果。(2)定义一般状况下,把n1或多于n1个苹果放到n个抽屉里,其中必定至少有一个抽屉里至少有两个苹果。我们称这种现象为抽屉原理。学习总结二:抽屉原理是什么桌上有十个苹果,要把这十个苹果放到九个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面至少放两个苹果。这一现象就是我们所说的“抽屉原理”。抽屉原理的一般含义为:“如果每个抽屉代表一个集合,每一个苹果就能够代表一个元素,假如有n+1个元素放到n个集合中去
2、,其中必定有一个集合里至少有两个元素。”抽屉原理有时也被称为鸽巢原理。它是组合数学中一个重要的原理。第一抽屉原理原理1:把多于n个的物体放到n个抽屉里,则至少有一个抽屉里的东西不少于两件。证明(反证法):如果每个抽屉至多只能放进一个物体,那么物体的总数至多是n1,而不是题设的n+k(k1),故不可能。原理2:把多于mn(m乘以n)(n不为0)个的物体放到n个抽屉里,则至少有一个抽屉里有不少于(m+1)的物体。证明(反证法):若每个抽屉至多放进m个物体,那么n个抽屉至多放进mn个物体,与题设不符,故不可能。原理3:把无穷多件物体放入n个抽屉,则至少有一个抽屉里有无穷个物体。原理1、2、3都是第一
3、抽屉原理的表述。第二抽屉原理把(mn1)个物体放入n个抽屉中,其中必有一个抽屉中至多有(m1)个物体(例如,将35-1=14个物体放入5个抽屉中,则必定有一个抽屉中的物体数少于等于3-1=2)。在上方的第一个结论中,由于一年最多有366天,因此在367人中至少有2人出生在同月同日。这相当于把367个东西放入366个抽屉,至少有2个东西在同一抽屉里。在第二个结论中,不妨想象将5双手套分别编号,即号码为1,2,。5的手套各有两只,同号的两只是一双。任取6只手套,它们的编号至多有5种,因此其中至少有两只的号码相同。这相当于把6个东西放入5个抽屉,至少有2个东西在同一抽屉里。抽屉原理的一种更一般的表述
4、为:“把多于kn+1个东西任意分放进n个空抽屉(k是正整数),那么必须有一个抽屉中放进了至少k+1个东西。”利用上述原理容易证明:“任意7个整数中,至少有3个数的两两之差是3的倍数。”正因任一整数除以3时余数只有0、1、2三种可能,因此7个整数中至少有3个数除以3所得余数相同,即它们两两之差是3的倍数。如果问题所讨论的对象有无限多个,抽屉原理还有另一种表述:“把无限多个东西任意分放进n个空抽屉(n是自然数),那么必须有一个抽屉中放进了无限多个东西。”学习总结三:抽屉原理知识要点抽屉原理又称鸽巢原理,它是组合数学的一个基本原理,最先是由德国数学家狭利克雷明确地提出来的,因此,也称为狭利克雷原理。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 什么是 抽屉 原理
限制150内