基于遗传算法的神经网络设计本科生毕业设计.doc
《基于遗传算法的神经网络设计本科生毕业设计.doc》由会员分享,可在线阅读,更多相关《基于遗传算法的神经网络设计本科生毕业设计.doc(42页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、江西理工大学2010届本科生毕业设计(论文)摘 要随着科学技术的发展,各学科交叉渗透,利用遗传算法用于解决传统计算所遇到的寻找最优解或准优解显得尤为重要。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。遗传算法经实践证明特别有效的算法。本课题将在对神经网络、遗传算法等进行基础理论研究的前提下,注重对遗传算法的C语言实现进行研究,同时对GA在优化和神经网络训练等方面的应用和实现进行较深入的探讨。本文阐述了将遗传算法用于神经网络权值学习和训练的原理和方法,并详述了神经网络权值学习和训练中遗传算法的具体实现
2、过程。关键词:遗传算法;神经网络;繁殖;交叉;变异;适应度ABSTRACTWith the development of science and technology, infiltrated the various disciplines, the traditional use of genetic algorithms for solving encountered calculation to find the optimal solution or quasi-optimal solution is very important. Therefore, the study can b
3、e automatically in the search process and the accumulation of knowledge of the search space, and can adaptively control the search process, thereby yielding the optimal solution or the quasi-solvability of the general search algorithm has been a remarkable subject. GA proven particularly effective m
4、ethod. This issue will be on neural networks, genetic algorithms and basic premise of theory, focusing on the C language implementation of genetic algorithm research, while GA optimization and neural network training in the areas of application and implementation of more in-depth . In this paper, ge
5、netic algorithm neural network weight learning and training principles and methods, and detailed study of neural network weights and training in the specific realization of genetic algorithmKey words: genetic algorithm; neural network; fitness; crossover ;mutation breeding;毕业设计(论文)原创性声明和使用授权说明原创性声明本
6、人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得 及其它教育机构的学位或学历而使用过的材料。对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。作 者 签 名: 日 期: 指导教师签名: 日期: 使用授权说明本人完全了解 大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印
7、、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。作者签名: 日 期: 学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。本人完全意识到本声明的法律后果由本人承担。作者签名: 日期: 年 月 日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。本人授权
8、 大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。涉密论文按学校规定处理。作者签名:日期: 年 月 日导师签名: 日期: 年 月 日目 录第一章 绪论41.1遗传算法的产生及特点41.2遗传算法的发展及其应用51.3本课题的选题背景51.5本课题研究目的与意义6第二章 神经元网络及BP算法72.1 神经网络概述72.2 神经元的数学模型72.3 BP学习算法92.4 BP算法的原理9第三章遗传算法1531遗传算法概述153.2遗传算法的步骤163.2.1编码问题163.2.3选择173.2.4交叉183.2.5变异193.2.
9、6全局最优收敛19第四章 遗传算法在神经网络中的应用214.1遗传算法与神经网络的结合214.2遗传算法训练神经网络C语言实现224.2.1用遗传算法训练神经网络的要求224.2.3遗传算法训练神经网络C语言实现244.3 结果分析35第五章 结束语38参考文献:39第一章 绪论BP网(Back Propagation Network)是目前应用最为广泛的神经网络,具有相当强的输入输出映射能力但是,由于BP算法的基本思想是最小二乘法,采用的是梯度搜索技术,难免存在收敛速度慢、局部极小等问题。神经网络和遗传算法都是比较先进的计算方法,它们已成功地应用于工业、经济管理、交通运输、工业设计等领域,解
10、决了许多问题。但是神经网络权值训练和学习过程的复杂和长期性,特别是神经网络易有训练过度的缺点,这些都大大影响了神经网络的更广泛普及和应用。遗传算法是一种高效和计算简单的优化算法,它完全可以应用于神经网络权值的训练和学习中,提高神经网络的学习效率和学习速度,减轻网络学习过度的问题,为神经网络的更广泛应用奠定基础。1.1遗传算法的产生及特点遗传算法是根据生物进化思想而启发得出的一种全局优化算法,并且遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技
11、术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。 作为一种新的全局优化搜索算法,遗传算法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。遗传算法作为一种快捷、简便、容错性强的算法,在各类结构对象的优化过程中显示出明显的优势。与传统的搜索方法相比,遗传算法具有如下特点:搜索过程不直接作用在变量上,而是在参数集进行了编码的个体。此编码操作,使得遗传算法可直接对结构对象(
12、集合、序列、矩阵、树、图、链和表)进行操作。搜索过程是从一组解迭代到另一组解,采用同时处理群体中多个个体的方法,降低了陷入局部最优解的可能性,并易于并行化。采用概率的变迁规则来指导搜索方向,而不采用确定性搜索规则。对搜索空间没有任何特殊要求(如连通性、凸性等),只利用适应性信息,不需要导数等其它辅助信息,适应范围更广。遗传算法具有许多独特的优点:1遗传算法从问题解的中集开始嫂索,而不是从单个解开始。这是遗传算法与传统优化算法的极大区别。传统优化算法是从单个初始值迭代求最优解的;容易误入局部最优解。遗传算法从串集开始搜索,覆盖面大,利于全局择优。2遗传算法求解时使用特定问题的信息极少,容易形成通
13、用算法程序。由于遗传算法使用适应值这一信息进行搜索,并不需要问题导数等与问题直接相关的信息。遗传算法只需适应值和串编码等通用信息,几乎可处理任何问题。 3遗传算法有极强的容错能力遗传算法的初始串集本身就带有大量与最优解甚远的信息;通过选择、交叉、变异操作能迅速排除与最优解相差极大的串;这是一个强烈的滤波过程;并且是一个并行滤波机制。故而,遗传算法有很高的容错能力。4遗传算法中的选择、交叉和变异都是随机操作,而不是确定的精确规则。这说明遗传算法是采用随机方法进行最优解搜索,选择体现了向最优解迫近,交叉体现了最优解的产生,变异体现了全局最优解的覆盖。5遗传算法具有隐含的并行性。遗传算法在操作上具有
14、高度的并行性,许多研究人员都在探索在并行机和分布式系统上高效执行遗传算法的策略。对分布并行遗传算法的研究表明,只要通过保持多个群体和恰当控制群体间的相互作用来模拟并行执行过程,即使不使用并行计算机,也能提高算法的执行效率。1.2遗传算法的发展及其应用遗传算法(Genetic Algorithm)是一类借鉴生物界的进化规律(适者生存,优胜劣汰遗传机制)演化而来的随机化搜索方法。它是由美国的J.Holland教授1975年首先提出,其主要特点是直接对结构对象进行操作,不存在求导和函数连续性的限定;具有内在的隐并行性和更好的全局寻优能力;采用概率化的寻优方法,能自动获取和指导优化的搜索空间,自适应地
15、调整搜索方向,不需要确定的规则。遗传算法的这些性质,已被人们广泛地应用于组合优化、机器学习、信号处理、自适应控制和人工生命等领域。它是现代有关智能计算中的关键技术。 遗传算法是模拟达尔文的遗传选择和自然淘汰的生物进化过程的计算模型。它的思想源于生物遗传学和适者生存的自然规律,是具有“生存检测”的迭代过程的搜索算法。遗传算法以一种群体中的所有个体为对象,并利用随机化技术指导对一个被编码的参数空间进行高效搜索。其中,选择、交叉和变异构成了遗传算法的遗传操作;参数编码、初始群体的设定、适应度函数的设计、遗传操作设计、控制参数设定五个要素组成了遗传算法的核心内容。 作为一种新的全局优化搜索算法,遗传算
16、法以其简单通用、鲁棒性强、适于并行处理以及高效、实用等显著特点,在各个领域得到了广泛应用,取得了良好效果,并逐渐成为重要的智能算法之一。1.3本课题的选题背景当前科学技术正进入多学科互相交叉、互相渗透、互相影响的时代,生命科学与工程科学的交叉、渗透和相互促进是其中一个典型例子,也是近代科学技术发展的一个显著特点。但是,近年来,随着人工智能应用领域的不断拓广,传统的基于符号处理机制的人工智能方法在知识表示、处理模式信息及解决组合爆炸等方面所碰到的问题已变得越来越突出,有不少问题需要在复杂而庞大的搜索空间中寻找最优解或准优解。在求解此类问题时,若不能利用问题的固有知识来缩小搜索空间则会产生搜索的组
17、合爆炸。因此,研究能在搜索过程中自动获得和积累有关搜索空间的知识,并能自适应地控制搜索过程,从而得到最优解或准有解的通用搜索算法一直是令人瞩目的课题。遗传算法就是在这种背景下产生并经实践证明特别有效的算法。1.4本课题主要研究内容学习是神经网络研究的一个重要内容,它的适应性是通过学习实现的。根据环境的变化,对权值进行调整,改善系统的行为。由Hebb提出的Hebb学习规则为神经网络的学习算法奠定了基础。Hebb规则认为学习过程最终发生在神经元之间的突触部位,突触的联系强度随着突触前后神经元的活动而变化。在此基础上,人们提出了各种学习规则和算法,以适应不同网络模型的需要。有效的学习算法,使得神经网
18、络能够通过连接权值的调整,构造客观世界的内在表示,形成具有特色的信息处理方法,信息存储和处理体现在网络的连接中。1.5本课题研究目的与意义本课题任务主要是在监督学习中,利用C语言编程,研究通过GA算法直接训练神经网络和训练初始权值的方法。将训练样本的数据加到网络输入端,同时将相应的期望输出与网络输出相比较,得到误差信号,以此控制权值连接强度的调整,经多次训练后收敛到一个确定的权值。当样本情况发生变化时,经学习可以修改权值以适应新的环境。第二章 神经元网络及BP算法2.1 神经网络概述神经网络是大量的简单神经元按一定规则连接构成的网络系统。网络能够模拟人类大脑的结构和功能,自1943年第一个神经
19、网络模型MP模型提出至今,神经网络发展非常迅速。特别是1982年提出的Hopfield 网络模型和1985年提出的BP算法,神经网络逐步得到更加广泛的应用。神经网络是由大量神经元广泛互连形成大规模并行处理和分布式的信息存储的复杂网络系统。单一神经元可以有许多输入、输出。神经元之间的相互作用通过连接的权重体现,神经元的输出是其输入的函数。单一简单的神经元,经过大规模的互联形成了复杂庞大的系统,可实现多种多样的日任务。神经网络计算的基本特征是大规模并行处理、容错性、自适应性和自组织性。大规模并行处理指能同时处理与决策有关的因素采用某种学习算法从训练样本中学习,并将获取的知识存储在网络各单元之间的连
20、接权中,神经网络和基于符号的传统K9技术相比,具有直观性、并行性和抗噪性。目前已出现了多种网络模型和学习算法,主要用于分类、优化、模式识别、预测和控制等领域。2.2 神经元的数学模型从神经元的特性和功能可以知道,神经元是一个多输入单输出的信息处理单元,而且它对信息的处理是非线性的。根据神经元的特性和功能,可以把神经元抽象为一个简单的数学模型。工程上用的人工神经元模型如图2-2所示。 图2-2 神经元的数学模型在图22中,是神经元的输入,即是来自前级n个神经元的轴突的信息W是i神经元的阀值;,分别是i神经元对,的权系数,也即突触的传递效率;是i神经元的输出;f是激发函数,它决定i神经元受到输人,
21、的共同刺激达到阀值时以何种方式输出。 从图2-2的神经元模型,可以得到神经元的数学模型表达式: (2-1)图2-3.典型激发函数对于激发函数f有多种形式,其中最常见的有阶跃型、线性型和S型三种形式,这三种形式如图23所示。 为了表达方便;令:= (2-2)则公式(2-1)可写成下式: =F ; (2-3)显然,对于阶跃型激发函数有: (2-4)对于线性型激发函数,有: f()=; (2-5)对于S型激发函数,有: (2-6)对于阶跃型激发函数,它的输出是单位脉冲,故而这种激发函数的神经元称离散输出模型。 对于线性激发函数,它的输出是随输入的激发总量成正比的;故这种神经元称线性连续型模型。对于用
22、s型激发函数,它的输出是非线性的;故这种神经元称非线性连续型模型。 阀值函数(Thresh0ld Function)阀值函数又叫阶跃函数,当激活函数仅用来实现判定神经元所获得的网络输入是否超过闭值时,使用此函数。 (2-7)其小,、均为非负实数。通常,人们都用公式(27)的二值形式: 有时候,还将公式(28)中的0改为1,此时就变成了双极形式: (2-8)上面所叙述的是最广泛应用而且人们最熟悉的神经元数学模型;也是历史最长的神经元模型。近若干年来,随着神经网络理论的发展,出现了不少新颖的神经元数学模型,这些模型包括逻辑神经元模型,模糊神经元模型等,并且渐渐也受到人们的关注和重视。2.3 BP学
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 基于 遗传 算法 神经网络 设计 本科生 毕业设计
限制150内