微积分在经济学的应用大学论文.doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《微积分在经济学的应用大学论文.doc》由会员分享,可在线阅读,更多相关《微积分在经济学的应用大学论文.doc(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、唐山师范学院本科毕业论文题 目 微积分在经济学的应用学 生 指导教师 年 级 2014级专接本专 业 数学与应用数学系 别 数学与信息科学系唐山师范学院数学与信息科学系2016年5月郑重声明 本人的毕业论文(设计)是在指导教师张庆的指导下独立撰写完成的.如有剽窃、抄袭、造假等违反学术道德、学术规范和侵权的行为,本人愿意承担由此产生的各种后果,直至法律责任,并愿意通过网络接受公众的监督.特此郑重声明.毕业论文(设计)作者(签名): 年 月 日目 录标题1中文摘要11 引言12 微积分在经济学的应用12.1 边际分析12.2 弹性分析32.2.1 弹性的概念32.2.2 需求弹性32.2.3 需求
2、弹性与总收入的关系42.3 多元函数偏导数在经济分析中的应用52.3.1 边际经济量52.3.2 偏弹性62.3.3 偏导数求极值82.4 积分在经济分析中的应用92.4.1 边际函数求原函数92.4.2 消费者剩余与生产者剩余92.4.3 收益流的现值与未来值102.5 实际问题探索122.5.1 经济批量问题122.5.2 净资产分析132.5.3 核废料的处理143结束语16参考文献17致 谢18外文页19微积分在经济学的应用武亚南摘 要 本文从边际分析、弹性分析、多元函数偏导数在经济分析的应用、积分在经济分析中的应用、实际问题探索五方面来讨论微积分在经济学的应用.其中实际问题探索是利用
3、微积分去解决实际问题,为本文讨论的重点.关键词 微积分 边际分析 弹性分析 实际问题1 引言微积分的产生是数学史上伟大的成就,它不仅仅是从社会生产和理论科技中产生的,反过来,它应用到我们生活中的社会和科学技术中去.如今,微积分已是广大科学工作者和科技人员必不可少的工具.微积分是微分学和积分学的总称,它的萌芽、发生与发展经历了漫长的时期.并且它的产生与科学地继承和发展数学上的长期积累的研究成果是分不开的.以我国古代来说,三国时期魏人刘徽(公元263年)总结了前人的成果,提出了“割圆术”,他说:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣.”用正多边形逼近圆周.这是极限论思
4、想的成功运用.微分是联系到对曲线作切线的问题和函数的极大值、极小值问题.积分概念是求某些面积、体积和弧长而引起的,古希腊数学家阿基米德在抛物线求积法中用穷竭法求出抛物线弓形的面积.阿基米德的贡献真正成为积分学的萌芽.通过前人的研究成果,十七世纪末英国物理学家兼数学家牛顿(Newton,1642-1727)和德国数学家莱布尼茨(Leibniz,1646-1716)创立了微积分学.它的产生并不是偶然的.那时候,建筑工程的盛兴、河道堤坝的修建、造船事业的发展等提出了很多计算不同形状物体的面积、体积、重心、器壁上液体压力等静力学的与流体力学的问题.所以微积分的产生是由于社会经济的发展、生产技术的进步所
5、促使产生的.2 微积分在经济学的应用2.1 边际分析在经济问题中,常常会使用变化率的概念.变化率一般分为平均变化率和即时或瞬时率,平均变化率就是函数的增量与自变量的增量之比,瞬时变化率就是函数对自变量的导数,在经济学中也将瞬时变化率即导函数称为边际函数.一般,称为函数在内的平均变化率,它表示函数在内的平均变化速度.函数在处的导数称为函数在点的变化率,也称为在点处的边际函数值,它表示 在点处的变化速度.在经济学中边际函数定义如下定义1 设函数在处可导,则称导数为的边际函数.在处函数值为边际函数值.简称为边际.根据边际函数的定义,可知边际成本、边际收入、边际收益、边际需求,是成本函数、收入函数、需
6、求函数的导函数.例1 罐头厂生产的草莓罐头每瓶售价5.4元,如果每周销售量(单位:千瓶)为时,每周总成本为(元).设价格不变,求(1)可以获得利润的销售量范围;(2)每周销售量为多少瓶时,可以获得最大利润?解 总收益 总利润 当时,即当销售量在瓶至瓶之间可以获得利润.令,得故时,取得极大值,因极值唯一,即为最大值,所以当销售量为瓶时,可获得最大利润.上述结果表明销售量为每周瓶时此时获得最大利润,当销售量为每周瓶时,再增加一瓶,利润将增加,当销售量为每周瓶时,再增加一瓶,利润将减少.由此亦说明,并非生产的产品数量越多,利润越高,通过对边际利润的分析,可以减少工厂投资的盲目性,减少投资损失.2.2
7、 弹性分析我们在边际分析中,讨论的函数变化率属于绝对数范围的讨论.在经济问题中,仅仅用绝对数的概念是不足以深入分析问题的.例如:某超市甲商品的单价是5元,降价1元;乙商品单价200元,也降价1元,结果,甲商品的需求量变化较大,这是为什么呢?原因是甲降价幅度即相对增量比乙降价的幅度大.为此我们有必要研究一下函数的相对改变率.2.2.1 弹性的概念定义2 设函数在点处可导,函数的相对改变量与自变量的相对改变量之比,称为函数从到两点间的平均相对变化率,或称两点间的弹性.当时,的极限称为在处的相对变化率,也就是相对导数,或称弹性.记作即由定义可知函数在点处的弹性反映了的变化幅度对于变化幅度的大小影响,
8、根据弹性函数公式推导可知,两点之间的弹性有正负之分.2.2.2 需求弹性在定义2中已介绍过弹性函数,由此可知需求弹性反映了当商品价格变动时需求变动的强度,由于需求函数为递减函数,所以,从而为负数.经济学家一般用正数表示需求弹性,因此采用需求函数相对变化率的相反数来定义需求弹性.定义3 设某商品的需求函数为,则称为该商品从到两点间的需求弹性.若存在,则称为该商品在处的需求弹性.在经济学上,当时,称为单位弹性,即商品需求量的相对变化与价格的相对变化基本相等.当时,称为富有弹性,即商品需求量的相对变化大于价格的相对变化.当时,称为缺乏弹性,即商品需求量的相对变化小于价格的相对变化.利用同样的方法,也
9、可以求出供给弹性、收益弹性,但是,这样我们只是求出了弹性函数,并且分析出当自变量变动时,因变量变化的强度,而在市场经济中,企业经营者关心的是商品涨价或降价对企业的总收入的影响程度.2.2.3 需求弹性与总收入的关系在经济学上总收入 边际总收入 (1)若时,需求变动的幅度小于价格变动的幅度,此时边际总收入大于零,即总收入函数为递增函数,也就是当价格上涨,总收入增加,价格下跌时,总收入减少;(2)若时,需求变动的幅度等于价格变动的幅度,此时边际总收入等于零,即总收入在此时取得最大值;(3)若时,需求变动的幅度大于价格变动的幅度,此时边际总收入小于零,即总收入函数为递减函数,也就是当价格上涨,总收入
10、减少,价格下跌,总收入增加.通过分析上述需求弹性与总收入的关系,可推导出涨价未必增收,降价未必减收,从而能够在市场经济中为企业或经营者提供有利的条件,为他们的决策提供了有利的分析方法和新思路.例2 设某商品的价格与需求量的函数关系为,当商品价格处于哪种价格时,厂商可以用适当降价或涨价的办法提高总收入.解 由,解出设需求弹性为,边际需求由需求弹性定义可知 再由需求弹性与总收入的关系可知(1)当时,此时,需求变动的幅度小于价格变动的幅度,即当价格上涨时,总收入增加,价格下跌,总收入减少.(2)当时,此时,此时没有影响.(3)当时,此时,需求变动的幅度大于价格变动的幅度,即当价格上涨,总收入减少,价
11、格下跌,总收入增加.由上述分析可知,若企业对该商品进行价格调整时,参照以上分析法,当时,通过提升价格来提高总收入,当时,通过降低价格来提高总收入.那么该企业则会获得较高的利润,不会因为盲目的降低价格而使企业的总收入降低.2.3 多元函数偏导数在经济分析中的应用在上述的分析中,我们只是对一元函数进行了探讨,但是在市场经济中,并不是由一种元决定商品的销售策略,有时由多种元素来决定,这就要我们对其多元函数来进行分析.2.3.1 边际经济量设某企业生产某种产品的产量取决于投资的资本和劳动力,一般满足生产函数由偏导数的定义可知,表示在劳动力投入保持不变的情况下,资本投入变化时,产量的变化率称为资本的边际
12、产量.表示在资本投入保持不变的情况下,劳动力投入变化时,产量的变化率称为劳动力的边际产量.2.3.2 偏弹性由一元函数的弹性概念可知,为在点的弹性,由此可以推知在多元函数中的弹性.设二元函数,则函数对的偏弹性,表示若保持不变,的相对变化率.对的偏弹性,表示若保持不变,的相对变化率.设有和两种商品,并且它们的价格分别为和,它们各自的需求量为和,因此,它们的需求函数可表示为 需求的自身价格弹性,即 需求的交叉价格弹性,即 两种商品的相互关系当或时,则表示当两种商品中任意一个价格降低,都将使其一个需求量增加,另一个需求量减少,此时这两种商品就是替代商品,当或时,则表示当两种商品中任意一个价格降低,都
13、将使其需求量和增加,则这两种商品为互补商品,当或时,则称这两种商品相互独立.例3 某一种数码相机的的销售量,除了与它自身的价格相关外,还与彩色喷墨打印机的价格有关,具体相关函数为求时(1)对的弹性;(2)对的交叉弹性.解 (1)对的弹性为 当时,(2)对的交叉弹性为当时,由上述例子反映了商品之间的相关性,当交叉弹性大于零时,这时这两种商品是替代商品,也就是这两种商品之间存在着竞争关系;当交叉弹性小于零时,这时这两种商品是互补商品,也就是说两种商品之间存在着互补的关系,不存在着竞争,这两种商品必须同时使用才能满足消费者的某种需求,这样的结果也为企业的经营者提供了有利的决策条件.2.3.3 偏导数
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 微积分 经济学 应用 大学 论文
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内