人教版新课标小学数学五年级上册教案.pdf
《人教版新课标小学数学五年级上册教案.pdf》由会员分享,可在线阅读,更多相关《人教版新课标小学数学五年级上册教案.pdf(112页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、正弦和 余 弦(一)一、素质教育目标(一)知识教学点使学生知道当直角三角形的锐角固定时,它的对边、邻边与斜边的比值也都固定这一事实.(二)能力训练点逐步培养学生会观察、比较、分析、概括等逻辑思维能力.(三)德育渗透点引导学生探索、发现,以培养学生独立思考、勇于创新的精神和良好的学习习惯.二、教学重点、难点1.重点:使学生知道当锐角固定时,它的对边、邻边与斜边的比值也是固定的这一事实.2.难点:学生很难想到对任意锐角,它的对边、邻边与斜边的比值也是固定的事实,关键在于教师引导学生比较、分析,得出结论.三、教学步骤(一)明确目标图 6-11.如 图6-1,长5米的梯子架在高为3米的墙上,则A、B间
2、距离为多少米?2.长5米的梯子以倾斜角NCAB为3 0 靠在墙上,则A、B间的距离为多少?3.若 长5米的梯子以倾斜角4 0 架在墙上,则A、B间距离为多少?4.若 长5米的梯子靠在墙上,使A、B间距为2米,则倾斜角NCAB为多少度?前两个问题学生很容易回答.这两个问题的设计主要是引起学生的回忆,并使学生意识到,本章要用到这些知识.但后两个问题的设计却使学生感到疑惑,这对初三年级这些好奇、好胜的学生来说,起到激起学生的学习兴趣的作用.同时使学生对本章所要学习的内容的特点有一个初步的了解,有些问题单靠勾股定理或含3 0 角的直角三角形和等腰直角三角形的知识是不能解决的,解决这类问题,关键在于找到
3、一种新方法,求出一条边或一个未知锐角,只要做到这一点,有关直角三角形的其他未知边角就可用学过的知识全部求出来.通过四个例子引出课题.()整体感知1.请每一位同学拿出自己的三角板,分别测量并计算30。、4 5、60角的对边、邻边与斜边的比值.学生很快便会回答结果:无论三角尺大小如何,其比值是一个固定的值.程度较好的学生还会想到,以后在这些特殊直角三角形中,只要知道其中一边长,就可求出其他未知边的长.2.请同学画一个含4 0 角的直角三角形,并测量、计算40。角的对边、邻边与斜边的比值,学生又高兴地发现,不论三角形大小如何,所求的比值是固定的.大部分学生可能会想到,当锐角取其他固定值时,其对边、邻
4、边与斜边的比值也是固定的吗?这样做,在培养学生动手能力的同时,也使学生对本节课要研究的知识有了整体感知,唤起学生的求知欲,大胆地探索新知.(三)重 点、难点的学习与目标完成过程1.通过动手实验,学生会猜想到“无论直角三角形的锐角为何值,它的对边、邻边与斜边的比值总是固定不变的”.但是怎样证明这个命题呢?学生这时的思维很活跃.对于这个问题,部分学生可能能解决它.因此教师此时应让学生展开讨论,独立完成.2.学生经过研究,也许能解决这个问题.若不能解决,教师可适当引导:Cl Q C3图6-2若一组直角三角形有一个锐角相等,可以把其顶 点AI,A2,A3重合在一起,记 作A,并使直角边AC”AC2,A
5、C3落在同一条直线上,则斜边AB”AB2,AB3落在另一条直线上.这样同学们能解决这个问题吗?引导学生独立证明:易知,BC|B2C2B3C3,/.ABIQS AAB2c2s2AB3c3s,:.蛆啰昌.朋A C,.AC,因此 在这些直角二角AB】AB,AB,1 AB(AB,AB,*H U M用一闲形中,N A的对边、邻边与斜边的比值,是一个固定值.通过引导,使学生自己独立掌握了重点,达到知识教学目标,同时培养学生能力,进行了德育渗透.而前面导课中动手实验的设计,实际上为突破难点而设计.这一设计同时起到培养学生思维能力的作用.sin 60=练习题为 2作了孕伏同时使学生知道任意锐角的对边与斜边的比
6、值都能求出来.(四)总结与扩展1.引导学生作知识总结:本节课在复习勾股定理及含3 0 角直角三角形的性质基础上,通过动手实验、证明,我们发现,只要直角三角形的锐角固定,它的对边、邻边与斜边的比值也是固定的.教师可适当补充:本节课经过同学们自己动手实验,大胆猜测和积极思考,我们发现了一个新的结论,相信大家的逻辑思维能力又有所提高,希望大家发扬这种创新精神,变被动学知识为主动发现问题,培养自己的创新意识.2.扩 展:当锐角为3 0 时,它的对边与斜边比值我们知道.今天我们又发现,锐角任意时,它的对边与斜边的比值也是固定的.如果知道这个比值,已知一边求其他未知边的问题就迎刃而解了.看来这个比值很重要
7、,下节课我们就着重研究这个“比值”,有兴趣的同学可以提前预习一下.通过这种扩展,不仅对正、余弦概念有了初步印象,同时又激发了学生的兴趣.四、布置作业本节课内容较少,而且是为正、余弦概念打基础的,因此课后应要求学生预习正余弦概念.五、板书设计正弦和余弦(二)对应的锐角度数.一、素质教育目标(一)知识教学点使学生初步了解正弦、余弦概念;能够较正确地用sinA、cosA表示直角三角形中两边的比;熟记特殊角30、4 5、60 角的正、余弦值,并能根据这些值说出(二)能力训练点逐步培养学生观察、比较、分析、概括的思维能力.(三)德育渗透点渗透教学内容中普遍存在的运动变化、相互联系、相互转化等观点.二、教
8、学重点、难点1.教学重点:使学生了解正弦、余弦概念.2.教学难点:用含有几个字母的符号组sinA、cosA表示正弦、余弦;正弦、余弦概念.三、教学步骤(一)明确目标1.引导学生回忆“直角三角形锐角固定时,它的对边与斜边的比值、邻边与斜边的比值也是固定的.2.明确目标:这节课我们将研究直角三角形一锐角的对边、邻边与斜边的比值正弦和余弦.(二)整体感知当直角三角彩有一锐角为为时,它的时边与斜边的比值为g.只要知道三角形任一边长,其他两边就可知.而上节课我们发现:只要直角三角形的锐角固定,它的对边与斜边、邻边与斜边的比值也固定.这样只要能求出这个比值,那么求直角三角形未知边的问题也就迎刃而解了.通
9、过 与“3 0 角所对的直角边等于斜边的一半”相类比,学生自然产生想学习的欲望,产生浓厚的学习兴趣,同时对以下要研究的内容有了大体印象.(三)重点、难点的学习与目标完成过程正弦、余弦的概念是全章知识的基础,对学生今后的学习与工作都十分重要,因此确定它为本课重点,同时正、余弦概念隐含角度与数之间具有一一对应的函数思想,又用含儿个字母的符号组来表示,因此概念也是难点.在上节课研究的基础上,引入正、余弦,“把对边、邻边与斜边的比值称做正弦、余弦”.如 图63:请学生结合图形叙述正弦、余弦定义,以培养学生概括能力及语言表达能力.教师板书:在ABC中,N C为直角,我们把锐角A的对边与斜边的比叫做N A
10、的正弦,记 作sinA,锐 角A的邻边与斜边的比叫做N A的余弦,记 作cosA.B8 1 1 A一福 一 8 班福一若把N A 的对边BC记作a,邻边AC记作b,斜边AB记作c,则a bsmA=,CMA=.引导学生思考:当N A 为锐角时,sinA、cosA的值会在什么范围内?得结论 0sinA1,0cosA _BC)=%csA 吟学生练习1中1、2、3.让每个学生画含30。、4 5 的直角三角形,分别求sin30、sin45、sin60和cos30、cos45、cos600.这一练习既用到以前的知识,又巩固正弦、余弦的概念,经过学习亲自动笔计算后,对特殊角三角函数值印象很深刻.sin30,
11、cos30*=T SIB45*=g,sin6O*=.M 4 4_ 乖。4口 _ 42 _ 1cos45 ,cost60 彳4 4 4例2求下列各式的值:第(I).m30,+30*+g=4 4 4 a(2)aft45*-co60*乎为了使学生熟练掌握特殊角三角函数值,这里还应安排六个小题:(1)sin45+cos45;(2)sin30-cos60;(3)0.5-iiii60*jn30*c831r(5)anA=1.JMZA=*(08sA.=*,MZA=在确定每个学生都牢记特殊角的三角函数值后,引导学生思考,“请大家观察特殊角的正弦和余弦值,猜测一下,sin20大概在什么范围内,cos50呢?这样的
12、引导不仅培养学生的观察力、注意力,而且培养学生勇于思考、大胆创新的精神.还可以进一步请成绩较好的同学用语言来叙述锐角的正弦值随角度增大而增大,余弦值随角度增大而减小.为查正余弦表作准备.(四)总结、扩展首先请学生作小结,教师适当补充,“主要研究了锐角的正弦、余弦概念,已知直角三角形的两边可求其锐角的正、余弦值.知道任意锐角A的正、余弦值都在01之间,即0sinA1,0cosA 6 0 这三个特殊角的正弦值和余弦值,但在生产和科研中还常用到其他锐角的正弦值和余弦值,为了使用上的方便,我们把0 9 0 间每隔r的各个角所对应的正弦值和余弦值(一般是含有四位有效数字的近似值),列成表格正弦和余弦表.
13、本节课我们来研究如何使用正弦和余弦表.(三)重点、难点的学习与目标完成过程1.“正弦和余弦表”简介学生已经会查平方表、立方表、平方根表、立方根表,对数学用表的结构与查法有所了解.但正弦和余弦表与其又有所区别,因此首先向学生介绍“正弦和余弦表”.(1)“正弦和余弦表”的作用是:求锐角的正弦、余弦值,已知锐角的正弦、余弦值,求这个锐角.2)表中角精确到1,正弦、余弦值有四位有效数字.3)凡表中所查得的值,都用等号,而 非“心”,根据查表所求得的值进行近似计算,结果四舍五入后,一 般 用 约 等 号 表 示.2.举例说明例4查表求37 24z的正弦值.学生因为有查表经验,因此查sin37 2 4 的
14、值不会是到困难,完全可以自己解决.例5查表求37 2 6 的正弦值.学生在独自查表时,在正弦表顶端的横行里找不到2 6,但2 6 在2 4 3 0 间而靠近2 4,比2 4 多2,可引导学生注意修正值栏,这样学生可能直接得答案.教师这时可设问“为什么将查得的5加 在0.6074的最后一个数位上,而不是0.6074减去0.0005”.通过引导学生观察思考,得结论:当角度在0 9 0 间变化时,正弦值随着角度的增大(或减小)而增大(或减小).解:sin37 24=0.6074.角度增2 值 增0.0005sin37 26=0.6079.例6查表求sin37 2 3 的值.如果例5学生已经理解,那么
15、例6学生完全可以自己解决,通过对比,加强学生的理解.解:sin37 24=0.6074角度 减1 值 减0.0002sin37 23=0.6072.在查表中,还应引导学生查得:sinO0=0,sin90=1.根据正弦值随角度变化规律:当角度从0 增加到9 0 时,正弦值从。增加 到1;当角度从9 0 减少到0 时,正弦值从1减 到0.可引导学生查得:cosO=1,cos90=0.根据余弦值随角度变化规律知:当角度从0 增加到90 口 寸,余弦值从1减小到0,当角度从9 0 减小到0 时,余弦值从0增 加 到1.(四)总结与扩展1.请学生总结本节课主要讨论了“正弦和余弦表”的查法.了解正弦值,余
16、弦值随角度的变化而变化的规律:当角度在0 9 0 间变化时,正弦值随着角度的增大而增大,随着角度的减小而减小;当角度在0 9 0 间变化时,余弦值随着角度的增大而减小,随着角度的减小而增大.2.“正弦和余弦表”的用处除了已知锐角查其正、余弦值外,还可以已知正、余弦值,求锐角,同学们可以试试看.四、布置作业预习教材中例8、例9、例1 0,养成良好的学习习惯.五、板书设计14.1正弦和余弦(四)一、正余弦值随角度变 二、例题 例5 例6化规律例 4正弦和余弦(五)一、素质教育目标(一)知识教学点使学生会根据个锐角的正弦值和余弦值,查出这个锐角的大小.(二)能力训练点逐步培养学生观察、比较、分析、概
17、括等逻辑思维能力.(三)德育渗透点培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:由锐角的正弦值或余弦值,查出这个锐角的大小.2.难点:由锐角的正弦值或余弦值,查出这个锐角的大小.3.疑点:由于余弦是减函数,查 表 时“值增角减,值减角增”学生常常出错.三、教学步骤(一)明确目标1.锐角的正弦值与余弦值随角度变化的规律是什么?这一规律也是本课查表的依据,因此课前还得引导学生回忆.答:当角度在0 9 0 间变化时,正弦值随着角度的增大(或减小)而增大(或减小);当角度在0 9 0 间变化时,余弦值随角度的增大(或减小)而减小(或增大).2.若 cos21 30=0.9304,且表中同一
18、行的修正值是分1 J 2 13 1修正值123则 cos21。3 y =,cos21 28=.3.不查表,比较大小:(1)sin20 sin20 1 5;(2)cos51 cos50 1 0;(3)sin21 cos68.学生在回答2题时极易出错,教师一定要引导学生叙述思考过程,然后得出答案.3题的设计主要是考察学生对函数值随角度的变化规律的理解,同时培养学生估算.(二)整体感知已知一个锐角,我们可用“正弦和余弦表”查出这个角的正弦值或余弦值.反过来,已知一个锐角的正弦值或余弦值,可 用“正弦和余弦表”查出这个角的大小.因为学生有查“平方表”、“立方表”等经验,对这一点必深信无疑.而且通过逆向
19、思维,可能很快会掌握已知函数值求角的方法.(三)重点、难点的学习与目标完成过程.例8已知sinA=0.2974,求锐角A.学生通过上节课已知锐角查其正弦值和余弦值的经验,完全能独立查得锐角A,但教师应请同学讲解查的过程:从正弦表中找出0.2974,由这个数所在行向左 查 得17,由同一数所在列向上查得1 8,即0.2974=sin17 1 8,以培养学生语言表达能力.解:查表得sin17 18=0.2974,所以锐角 A=17。1 8.例9已知cosA=0.7857,求锐角A.分析:学生在表中找不到0.7857,这时部分学生可能束手无策,但有上节课查表的经验,少数思维较活跃的学生可能会想出办法
20、.这时教师最好让学生讨论,在探讨中寻求办法.这对解决本题会有好处,使学生印象更深,理解更透彻.若条件许可,应在讨论后请一名学生讲解查表过程:在余弦表中查不到0.7857.但能找到同它最接近的数0.7859,由这个数所在行向右查得38,由同一个数向下查得 1 2,即 0.7859=cos38 1 2.但cosA=0.7857,比 0.7859小 0.0002,这说明N A 比38 1 2 要大,由0.7859所在行向右查得修正值0.0002 对应的角度是 1 ,所以NA=38 12+1=38 1 3.解:查表得 cos38 12=0.7859,所以:0.7859=cos38 1 2,.值减0.0
21、002角度增10.7857=cos38 1 3,即 锐 角 A=38 13.例 1 0 已知cosB=0.4511,求锐角B.例 10与例9 相比较,只是出现余差体例中的0.0002)与修正值不-一致.教师只要讲清如何使用修正值(用最接近的值),以使误差最小即可,其余部分学生在例9 的基础上,可以独立完成.解:0.4509=cos63 12值增0.0003角度减r0.4512=cos63 1T二锐角 B=63 1T为了对例题加以巩固,教师在此应设计练习题,教材P.15中2、3.2.已知下列正弦值或余弦值,求锐角A 或 B:(1)sinA=0.7083,sinB=0.9371,sinA=0.35
22、26,sinB=0.5688;(2)cosA=0.8290,cosB=0.7611,cosA=0.2996,cosB=0.9931.此题是配合例题而设置的,要求学生能快速准确得到答案.(1)45 6,69 34,20 39,34 4 0;(2)34 0,40 26,72 34,6 4 4.3.查表求sin57与cos33,所得的值有什么关系?此题是让学生通过查表进一步印证关系式sinA=cos(90-A),cosA=0.8387,/.sin57=cos33,或 sin57=cos(90-57),cos33=sin(90-33).(四)、总结、扩展本节课我们重点学习了已知一个锐角的正弦值或余弦值
23、,可用“正弦和余弦表”查出这个锐角的大小,这也是本课难点,同学们要会依据正弦值和余弦值随角度变化规律(角度变化范围0 90)查“正弦和余弦表”.四、布置作业教材复习题十四A组3、4,要求学生只查正、余弦。五、板书设计14.1正弦和余弦(五)例8 例9 例10正弦和余弦(六)一、素质教育目标(一)知识教学点归纳综合第一大节的内容,使之系统化、网络化,并使学生综合运用这些知识,解决简单问题.(二)能力训练点培养学生分析、比较、综合、概括逻辑思维能力;培养学生分析问题、解决问题的能力;使学生逐步形成用数学的意识.(三)德育渗透点渗透数学知识来源于实践又反过来作用于实践的观点;培养学生的学习兴趣及良好
24、的学习习惯.二、教学重点、难点和疑点1.重点:归纳总结前面的知识,并运用它们解决有关问题.2.难点:归纳总结前面的知识,并运用它们解决有关问题.3.疑点:学生在用“正弦和余弦表”时,往往在修正值的加减上混淆不清.三、教学步骤(一)明确目标1.结合图6-5,请学生回忆,什么是N A的正弦,余弦?教师板H a b节.认=一cA=.c c2.互余两角的正弦、余弦值之间具有什么关系?答:sinA=cos(90-A),cosA=sin(90。-A).教师板书.3.特殊角0、3 0、4 5、6 0、9 0 的正弦值余弦值各是多少?答:aoCT=0.tin45*=4,J*n60*=,4 4 4i90*=li
25、co0*=1,cos30*=噌.coi45*=,co4SO*=:.cotW=0.4.在0 9 0 之间,锐角的正弦值、余弦值怎样随角度的变化而变化?答:在0-9 0 之间,锐角的正弦值随角度的增加(或减小)而增加(或减小);锐角的余弦值随角度的增加(或减小)而减小(或增加).本节课我们将运用以上知识解决有关问题.(二)重点、难点的学习与目标完成过程1.本章引言中提到这样一个问题:修建某扬水站时,要沿着斜坡铺设水管.假设水管AB长 为105.2米,NA=30。6 ,求坡高BC(保留四位有效数字).现在,这个问题我们能否解决呢?这里出示引言中的问题,不仅调动学生的积极性,激发学习动机,同时体现了教
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 人教版 新课 小学 数学 年级 上册 教案
限制150内