《七年级下学期数学全册教案(上).pdf》由会员分享,可在线阅读,更多相关《七年级下学期数学全册教案(上).pdf(103页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、七年级下学期数学全册教案(上)5.1相交线 教学目标1.通过动手、操作、推断、交流等活动,进一步发展空间观念,培养识图能力,推理能力和有条理表达能力2.在具体情境中了解邻补角、对顶角,能找出图形中的一个角的邻补角和对顶角,理解对顶角相等,并能运用它解决一些简单问题 教学重点与难点重点:邻补角与对顶角的概念.对顶角性质与应用难点:理解对顶角相等的性质的探索 教学设计一.创设情境 激发好奇 观察剪刀剪布的过程,引入两条相交直线所成的角在我们的生活的世界中,蕴涵着大量的相交线和平行线,本章要研究相交线所成的角和它的特征。观察剪刀剪布的过程,引入两条相交直线所成的角。学生观察、思考、回答问题教师出示一
2、块布和一把剪刀,表演剪布过程,提出问题:剪布时,用力握紧把手,两个把手之间的的角发生了什么变化?剪刀张开的口又怎么变化?教师点评:如果把剪刀的构造看作是两条相交的直线,以上就关系到两条直线相交所成的角的问题,真的不掉线吗?、?二.认识邻补角和对顶角,探索对顶角性质1.学 生 画 直 线AB、CD相 交 于 点0,并 说 出 图 中4个 角,两两相配共能组成几对角?根据不同的位置怎么将它们分类?学生思考并在小组内交流,全班交流。当学 生 直 观 地 感 知 角 有“相邻”、“对顶”关系时,教师引导学生用几何语言准确表达有 公 共 的 顶 点0,而且的两边分别是两边的反向延长线2.学生用量角器分别
3、量一量各角的度数,发现各类角的度数有什么关系?(学生得出结论:相邻关系的两个角互补,对顶的两个角相等)3学生根据观察和度量完成下表:两所分位数条直线形成的类置关系量关系相交角教师提问:如果改变的大小,会改变它与其它角的位置关系和数量关系吗?4.概括形成邻补角、对顶角概念和对顶角的性质一 一 初步应用练习:下列说法对不对(1)邻补角可以看成是平角被过它顶点的一条射线分成的两个角真的不掉线吗?、?(2)邻补角是互补的两个角,互补的两个角是邻补角(3)对顶角相等,相等的两个角是对顶角学生利用对顶角相等的性质解释剪刀剪布过程中所看到的现象四.巩 固 运 用 例 题:如 图,直 线a,b相 交,求的度数
4、。巩固练习(教 科 书5页 练 习)已知,如 图,求:的度数 小结邻补角、对顶角.作业 课本 P9-1,2P10-7,8 备选题一判断题:如果两个角有公共顶点和一条公共过,而且这两个角互为补角,那 么 它 们 互 为 邻 补 角()两条直线相交,如果它们所成的邻补角相等,那么一对对顶角就互 补()二填空题1如图,直线A B、C D、E F相交于点0,的 对 顶 角 是,的邻补角是若:=2:3,贝 寸=2如图,直线A B、C D相交于点0则真的不掉线吗?、?课后小记:5.1.2垂线 教学真的不掉线吗?、?目标1.理解垂线、垂线段的概念,会用三角尺或量角器过一点画已知直线的垂线。2.掌握点到直线的
5、距离的概念,并会度量点到直线的距离。3.掌握垂线的性质,并会利用所学知识进行简单的推理。教学重点与难点1.教学重点:垂线的定义及性质。2.教学难点:垂线的画法。教学过程设计一.复 习 提 问:1、叙述邻补角及对顶角的定义。2、对顶角有怎样的性质。二.新 课:引言:前面我们复习了两条相交直线所成的角,如果两条直线相交成特殊角直角时,这两条直线有怎样特殊的位置关系呢?日常生活中有没有这方面的实例呢?下面我们就来研究这个问题。(-)垂线的定义当两条直线相交的四个角中,有一个角是直角时,就说这两条直线是互相垂直的,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足。如图,直线AB、CD互相垂直,记作
6、,垂足为0。请同学举出日常生活中,两条直线互相垂直的实例。真的不掉线吗?、?注意:1、如遇到线段与线段、线段与射线、射线与射线、线段或射线与直线垂直,特指它们所在的直线互相垂直。2、掌握如下的推理过程:(如上图)反之,(二)垂线的画法探究:1、用三角尺或量角器画已知直线1的垂线,这样的垂线能画出几条?2、经过直线1上一点A画1的垂线,这样的垂线能画出几条?3、经过直线1外一点B画1的垂线,这样的垂线能画出几条?画法:让三角板的一条直角边与已知直线重合,沿直线左右移动三角板,使其另一条直角边经过已知点,沿此直角边画直线,则这条直线就是已知直线的垂线。注意:如过一点画射线或线段的垂线,是指画它们所
7、在直线的垂线,垂足有时在延长线上。(三)垂线的性质经过一点(已知直线上或直线外),能画出已知直线的一条垂线,并且只能画出一条垂线,即:真的不掉线吗?、?性 质1 过一点有且只有一条直线与已知直线垂直。练习:教材第7页探究:如图,连接直线1外一点P与直线1上各点0,A,B,C,,其 中(我们称P0为点P到直线1的垂线段)。比较线段P0、PA、PB、PC的长短,这些线段中,哪一条最短?性 质2 连接直线外一点与直线上各点的所有线段中,垂线段最短。简单说成:垂线段最短。(四)点到直线的距离直线外一点到这条直线的垂线段的长度,叫做点到直线的距离。如上图,P 0的长度叫做点P至U直 线1的距离。例1(1
8、)A B与A C互相垂直;(2 )A D与A C互相垂直;(3)点C到A B的垂线段是线段A B;(4)点A到B C的距离是线段A D;(5)线 段A B的长度是点B到A C的距离;(6)线 段A B是 点B到A C的距离。其中正确的有()A.1个B.2个C.3个D.4个真的不掉线吗?、?解:A例2如 图,直 线AB,CD相交于点0,解:略例3如图,一辆汽车在直线形公路AB上 由A向B行驶,M,N分别是位于公路两侧的村庄,设汽车行驶到点P位置时,距离村庄M最近,行驶到点Q位置时,距离村庄N最近,请在图中公路AB上分别画出P,Q两点位置。练习:1.2.教材第9页3、4教材第10页9、10、11、
9、12小结:1.要掌握好垂线、垂线段、点到直线的距离这几个概念;2.要清楚垂线是相交线的特殊情况,与上节知识联系好,并能正确利用工具画出标准图形;3.垂线的性质为今后知识的学习奠定了基础,应该熟练掌握。作业:教材第9 页 5、6.真的不掉线吗?、?课后小记:真的不掉线吗?、?5.2.1 平行线 教学目标1.理解平行线的意义,了解同一平面内两条直线的位置关系;2.理解并掌握平行公理及其推论的内容;3.会根据几何语句画图,会用直尺和三角板画平行线;4.了 解“三线八角”并能在具体图形中找出同位角、内错角与同旁内角;4.了解平行线在实际生活中的应用,能举例加以说明.教学重点与难点1.教学重点:平行线的
10、概念与平行公理;2.教学难点:对平行公理的理解.教学过程一、复习提问真的不掉线吗?、?相交线是如何定义的?二、新课引入平面内两条直线的位置关系除平行外,还有哪些呢?制作教具,通过演示,得出平面内两条直线的位置关系及平行线的概念.三、同一平面内两条直线的位置关系1.平行线概念:在同一平面内,不相交的两条直线叫做平行线.直线 a 与 b 平行,记 作 a II b.(画出图形)2 .同一平面内两条直线的位置关系有两种:(1)相 交;(2)平行.3 .对平行线概念的理解:两个关键:一 是“在同一个平面内”(举 例 说 明);二 是“不相交”.一个前提:对两条直线而言.4 .平行线的画法平行线的画法是
11、几何画图的基本技能之一,在以后的学习中,会经 常 遇到 画 平 行 线 的 问 题.方 法 为:一“落”(三角板的一边落在已知 直 线 上),二“靠”(用直尺紧靠三角板的另一边),三“移”(沿直尺移动三角板,直至落在已知直线上的三角板的一边经过已知点),四“画”(沿三角板过已知点的边画直线).四、平行公理1.利用前面的教具,说 明“过直线外一点有且只有一条直线与已知直线平行”.2.平行公理:经过直线外一点,有且只有一条直线与这条直线平行.提问垂线的性质,并进行比较.3.平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互真的不掉线吗?、?相 平 行.即:如 果b/a,c/a,那 么
12、b/c.五、三线八角由前面的教具演示引出.如图,直 线a,b被 直 线c所 截,形 成 的8个角中,其中同位角有4对,内 错 角 有2对,同旁 内 角 有2对.六、课堂练习1.在同一平面内,两条直线可能的位置关系是2.在同一平面内,三条直线的交点个数可能是.3.下列说法正确的是()A.经过一点有且只有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行4.若/与 N是同旁内角,且/=50。,则N的度数是(A.5 0 B.1 3 0 C.5 0 或 1 3 0 D.不能确定5.下列命题:(1)长方形的对边
13、所在的直线平行;(2)经过一点可作一条直线与已知直线平行;(3)在同一平面内,如果两条直线不平行,那么这两条直线相交;(4)经过一点可作一条直线与已知直线垂直.其中正确的个数是()A.1 B.2 C.3 D.46.如图,直 线A B,C D被D E所截,则N1和 是同位角,N1和 是内错角,N1和 是同旁内角.如果N 5=N 1,那么 N 1 N 3.真的不掉线吗?、?七、小结让学生独立总结本节内容,叙述本节的概念和结论.八、课后作业1 .教 材P 1 9第7题;2 .画图说明在同一平面内三条直线的位置关系及交点情况.补充内容1 .试说明,如果两条直线都和第三条直线平行,那么这两条直线也互相平
14、行.2 .在同一平面内,两条直线的位置关系仅有两种:相交或平行.但现实空间是立体的,试想一想在空间中,两条直线会有哪些位置关系呢?(用长方体来说明)课后小记:真的不掉线吗?、?5.2.2直 线 平 行 的 条 件(第 2 课时)一.教学目标(1)使学生进一步理解并掌握判定两条直线平行的方法;了解简单的逻辑推理过程.二.教学重点与难点重点:判定两条直线平行方法的应用;难点:简单的逻辑推理过程.三.教学过程复习提问:1.判定两条直线平行的方法有哪些?2.如图(1)如果N 1=N 4,根据_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _,可 得 AB/CD;(2)如果N 1=N
15、 2,根据_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _,可 得 AB/CD;(3)如果 Nl+N3=1 8 0,根据_ _ _ _ _ _ _ _ _ _ _ _ _ _ _,可得 A B/CD .真的不掉线吗?、?3.如图(2)(1)如果N 1=N D,那么_ _ _ _ _ _II_;(2)如果N 1=N B,那么_ _ _ _ _ _II_;(3)如果NA+NB=180,那么_ _ _ _ _ _II_;(4)如果NA+ND=180,那么_ _ _ _ _ _II_;新课:例 1 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线平行吗?为什么?分析:
16、垂直总与直角联系在一起,我们学过哪些判断两条直线平行的方法?答:这两条直线平行.如图所示理由如下:,.,b_La,c_La.Nl=N2=90(垂直定义).b”c(同位角相等,两直线平行)思考:这是小明同学自己制作的英语抄写纸的一部分,其中的横格线互相平行吗?你有多少种判别方法?真的不掉线吗?、?例2 如图所示,N1=N2,ZBAC=20,ZACF=80.(1)求N 2 的度数;(2)FC与 AD平行吗?为什么?巩固练习1.教科书19页练习2.如图所示,如果Nl=47,Z2=133,ZD=47,那么BC与DE平行吗?AB与CD平行吗?3.如图所示,已知ND=NA,ZB=ZFCB,试问ED与CF平
17、行吗?真的不掉线吗?、?4.如图,N1=N2,N2=N3,N3+N4=180,找出图中互相平行的直线.作业:教科书1 9页习题5.2第7、8题课后小记:5.2.2直线平行的条件(一)教学目标件.3.借助用直尺和三角板画平行线的过程,,得出直线平行的条4.会用直线平行的条件来判定直线平行.5.激发学生学习数学的兴趣.教学重点与难点重点:理解直线平行的条件.真的不掉线吗?、?难点:直线平行的条件的应用 教学设计 提问复习题:1.如图,已知四条直线AB、AC、DE、FG(1)N 1与N 2是直线_ _ _和直线_ 一被直线_ _ _ _ _ _ _ _所截而成的-角.(2)N 3与N 2是直线_ _
18、 _ 和直线_ 一被直线_ _ _ _ _ _ _ _ 所截而成的-角.(3)N 5与N 6是直线_ _ _和直线_ 一被直线_ _ _ _ _ _ _ _ 所截而成的-角.(4)N 4与N 7是直线_ _ _ 和直线_ 被直线_ _ _ _ _ _ _ _ 所截而成的-角.(5)N 8与N 2是直线_ _ _ 和直线_ _ _ _ 被直线_ _ _ _ _ _ _ _ 所截而成的-角.2.下面说法中正确的是).(1)在同一平面内,两条直线的位置关系有相交、平行、垂直三种(2)在同一平面内,不垂直的两条直线必平行(3)在同一平面内,不平行的两条直线必垂直(4)在同一平面内,不相交的两条直线一定
19、不垂直3.如 果a II b,b lie,那么_ _ _ _ _ _ _,理由是导言:上节课我们学习了平行线的意义,在同一平面内,两条直线的位置关系,以及平行公理,在此基础上,我们再来研究直线平行的条件.新课:直线平行的条件演示用直尺和三角板画平行线的过程,真的不掉线吗?、?如果N4+N2=180。,a II b 吗?三种方法可以简单地说成:例题 已知:如图,直线AB,CD,EF被MN所截,N 1=N 2,N3+N 1=180。,试说明 CD II EF.解:因为N1=N 2,所以 AB II CD.又因为 Z3+Zl=180,所以 AB II EF.从而 CD /E F(为什么?).课堂练习
20、:1.下列判断正确的是().A.因为N 1和N 2是同旁内角,所以Nl+N2=1 8 0。真的不掉线吗?、?B.因为N 1和N 2是内错角,所以N1=N2C.因为N 1和N 2是同位角,所以N1=N2D.因为N 1和N 2是补角,所以Nl+N2=1 8 0。2.如 图:已 知Nl=65。,Z 2=65,那 么DE与BC平 行 吗?为什 么?如 果Nl=65。,Z 3=115,那 么AB与DF平 行 吗?为 什 么?)如 果N4=60。,Z 2=65,那 么DE与BC平 行 吗?为 什 么?3.4.如图所示:如 果 已 知N 1=N 3,则 可 判 定AB”_,其 理 由 是(2)如果已知N4+
21、N5=1 8 0 ,则可判定_ _ _ _ _ _ _ _ _ _ _II其理由是-;(3)如果已知Nl+N2=1 8 0 ,则可判定_ _ _ _ _ _ _ _ _ _ _II-其理由是-;(4)如果已知N 5+N2=1 8 0。那么根据对顶角相等有N 2=一,因此可知N 4+N 5=_ _ _,所以可确定 _ _ _ _ _ _ _ _ _ _ _II-其理由是-;(5)如果已知N 1=N 6,则可判定_ _ _ _II_ _ _ _ _ _ _,其理由是第4题图第5题图真的不掉线吗?、?5.如图,(1)如果Nl=_ _ _ _ _ _ _,那 么D E/A C;(2)如果Nl=_,那么
22、 EF/BC;如 果NFED+Z _=180,那么 AC/ED;(4)如果N2+Z _=180,那么 AB/DF.6.7.课后作业:习题5.2第1,2,4题.补充练习:已知:如图,A B II CD,EF分 别 交AB、C D于 E、F,E G 平分N A E F,FH平分N E FD E G与FH平行吗?为什么?课后小记:真的不掉线吗?、?5.3平行线的性质(一)教学目标1.使学生理解平行线的性质和判定的区别.2.使学生掌握平行线的三个性质,并能运用它们作简单的推理.重点难点重点:平行线的三个性质.难点:平行线的三个性质和怎样区分性质和判定.关键:能结合图形用符号语言表示平行线的三条性质.教
23、学过程一、复习1.如何用同位角、内错角、同旁内角来判定两条直线是否平行?2.把它们已知和结论颠倒一下,可得到怎样的语句?它们正确吗?二、新授1.实验观察,发现平行线第一个性质请学生画出下图进行实验观察.设L/L,L与它们相交,请度量/I和/2的大小,你能发现什么关系?请同学们再作出直线底,再度量一下/3和/4的大小,你还能发现它们有什么关系?平真的不掉线吗?、?行线性质1(公理):两直线平行,同位角相等.2.演绎推理,发现平行线的其它性质(1)已知:如图,直线A B,C D被直线E F所截,A B I I C D.求证:Z l=Z 2.(2)已知:如 图2 -6 4,直线A B,C D被直线E
24、 F所截,A B I I C D.求证:Zl+Z2=180.在此基础上指出:“平行线的性质2(定理)”和“平行线的性质3(定理)”.3.平行线判定与性质的区别与联系投影:将判定与性质各三条全部打出.(1)性质:根据两条直线平行,去证角的相等或互补.(2)判定:根据两角相等或互补,去证两条直线平行.联系是:它们的条件和结论是互逆的,性质与判定要证明的问题是不同的.三、例题例2如图所示,A B/C D,A C I I B D.找出图中相等的角与互补的角.此题一定要强调,哪两条直线被哪一条直线所截.答:相等的角为:Z 1=Z 2,Z 3=Z 4,Z 5=Z 6,Z 7=Z 8.互补的角为:Z B A
25、 C+Z A C D=1 8 0 ,Z A B D+Z C D B=1 8 0 ,Z C A B+Z D B A=1 8 0 ,Z A C D+Z B D C=1 8 0 .相等的角还有:Z A C D=Z A B D,Z B A C=Z B D C.(同角的补角相等)真的不掉线吗?、?例3如图所示.已知:A D B C,Z A E F=Z B,求证:A D /E F.分析:(执果索因)从图直观分析,欲 证A D/E F,只需Z A+Z A E F=1 8 0 ,(由因求果)因为A D/B C,所以/A+/B=1 8 0 ,又/B=/A E F,所以/A+/A E F=1 8 0 成立.于是得
26、证.证明:因 为A D/B C,(已知)所以 Z A+Z B=1 8 0 .(两直线平行,同旁内角互补)因 为Z A E F=Z B,(已知)所以 Z A+Z A E F=1 8 0 ,(等量代换)所 以A D I I E F.(同旁内角互补,两条直线平行)四、练习:1.如图所示,已知:A E平分/B A C,C E平分/A C D,且A B C D.求 证:Z l+Z 2=9 0 .证 明:因 为A B I I C D,所以 Z B A C+Z A C D=1 8 0 ,又 因 为A E平 分/B A C,C E平 分/A C D,所 以,,故.即 Z l+Z 2=9 0 .(理 由 略)2
27、.如 图 所 示,已知:Z 1=2 2,求 证:Z3+2 4=1 8 0 分 析:(让 学 生 自 己 分 析)证 明:(学 生 板 书)小结:我们是如何得到平行线的性质定理?通过度量,运用从特殊到一般的思维方式真的不掉线吗?、?发现性质1 (公理),然后由公理通过演绎证明得到后面两个性质定理.从因果关系和所起的作用来看性质定理和判定定理的区别与联系.作业:1 .如图,A B/C D,Z l=1 0 2 ,求/2、/3、/4、/5的度数,并说明根据?2 .如图,E F过a A B C的一个顶点A,且E F/B C,如果/B =4 0 ,Z 2 =7 5 ,那么/I、/3、N C、/B A C+
28、/B+/C 各是多少度,为什么?3 .如图,已知A D-B C,可以得到哪些角的和为1 8 0?已知A B/C D,可以得到哪些角相等?并简述理由.课后小记:5 .3平行线性质(二)教学目标6 .经历观察、操作、推理、交流等活动,进一步发展空间观念,推理能力和有条件表达能力7 .理解两条平行线的距离的含义,了解命题的含义,会区分命题的题设和结论8.能够综合运用平行线性质和判定解题 教学重点与难点重点:平行线性质和判定综合应用,两条平行线的距离,命题等概念难点:平行线性质和判定灵活运用 教学设计一.复习引入1.平行线的判定方法有哪些?2.平行线的性质有哪些?真的不掉线吗?、?3.完成下面填空已知
29、:BE是AB的延长线,AD/BC,AB/CD,若则4.那 么a,c的位置关系如何?二.新课1.例1,已知ac,直线b与c垂直吗?为什么?例2如图是一块梯形铁片的残余部分,量得,梯形另外两个角分别是多少度?2.实 践 与 探 究(1)学生操作:用三角尺和直尺画平行线,做成一张个格子的方格纸。观察并思考:做出的方格纸的一部分,线段都与两条平行线垂直吗?它们的长度相等吗?教师给出两条平行线的距离定义:同时垂直于两条平行线,并且夹在这两条平行线间的线段长度叫做两条平行线的距离。问题:A B/C D,在C D上任取一点E,作垂足F,问E F是否垂直D C?垂线段E F是平行线A B、C D的距离吗?结论
30、:两条平行线的距离处处相等,而不随垂线段的位置而改变3.命题和它的构成 下列语句,分析语句的特点(1)如果两条直线都与第三条直线平行,那么这两条直线也平行。(2)对顶角相等(3)等式两边同加上同一个数,结果仍是等式(4 )如果两条直线不平行,那么同位角不相等这些句子都是对某一件事情作出“是”或“不是”的判断命题:判断一件事情的句子,叫做命题(1)命题的组成:命题由题设和结论两部分组成,题设是已知项,结论是由真的不掉线吗?、?已知项推出的事项(2)形式:通 常 写 成“如果,那么”的形式,三.巩固练习1.“等式两边乘以同一个数,结果仍是等式”是命题吗?如果是,它的题设和结论分别是什么?2举出一些
31、命题的例子四.作业 课 本P 2 5课后小记:5.4平移 教学目标9.了解平移的概念,会进行点的平移,理解平移的性质,能解决简单的平移问题10.培养学生的空间观念,学会用运动的观点分析问题.教学重点与难点重点:平移的概念和作图方法.难点:平移的作图 教学设计观 察 图 形 形 成 印 象 着共同的特点,请生活中有许多美丽的图案,他们都有同学们欣赏下面图案.观察上面图形,我们发现他们都有一个局部和其他部分重复,如果给你一个局部,你能复制他们吗?学生思考讨论,借助举例说明.真的不掉线吗?、?二.提出新知实践探索平移:(1)把一个图形整体沿某一方向移动,会得到一个新的图形,新图形与原图形的形状和大小
32、完全相同.(2)新图形中的每一点,都是由原图形中的某一个点移动后得到的,这两个点是对应点.(3)连接各组对应的线段平行且相等.图形的这种变换,叫做平移变换,简称平移探究:设计一个简单的图案,利用一张半透明的纸附在上面,绘制一排形状,大小完全一样的图案三.典例剖析深化巩固例 如图,(1)平移三角形A B C,使 点A运动到A画出平移后的三角形A B C 巩固练习教材 3 3 页:1,2,4,5,6,7 小结1.在平移过程中,对应点所连的线段也可能在一条直线上,当图形平移的方向是沿着一边所在直线的方向时,那么此边上的对应点必在这条直线上2.利用平移的特征,作平行线,构 造 等 量关系是接7题常用的
33、方法.作业必 做 题:教 科 书 33页习题:3题真的不掉线吗?、?课后小记:6.1.1有序数对 教学目标11.理解有序数对的应用意义,了解平面上确定点的常用方法12.培养学生用数学的意识,激发学生的学习兴趣.教学重点与难点重点:有序数对及平面内确定点的方法.难点:利用有序数对表示平面内的点.教学设计 设计说明一.问题探知1.一位居民打电话给供电部门:“卫星路第8 根电线杆的路灯坏了,”维修人员很快修好了路灯同学们欣赏下面图案.2.地质部门在某地埋下一个标志桩,上面写着“北 纬 44.2。,东经125.7O ”o3.某人买了一张8 排 6 号的电影票,很快找到真的不掉线吗?、?了自己的座位。分
34、析以上情景,他们分别利用那些数据找到位置的。你能举出生活中利用数据表示位置的例子吗?二.概念确定有序数对:用含有两个数的词表示一个确定的位置,其中各个数表示不同的含义,我们把这种有顺序的两个数a与b组成的数对,叫做有序数对(ordered pair),记 作(a,b)6大道5大道利用有序数对,可以很准确地表示出一个位置。与3大 道 例1如 图,点A表 示3街 与5大道的十字路口,点B表 示5街与3大道的十字路口,如 果 用(3,5)(4,5)-(5,5)-(5,4)-(5,4大道3)表 示 由A到B的一条路径,那么你能用同样的方法写出由A到B的其他几条路径吗?3大道2大真的不掉线吗?、??道(
35、3,5)-(4,5)-(4,4)(4,3)一(5,3);1大道(3,5)一1(3,4)(4,彳 灯 4)-(5削)一 荷(5,3);分析:图中确定点用前一个数表示大街,后一个数表示大道。(3,5)一(3,4)-(4,4)-(4,3)f(5,3);解:其他的路径可以是:(3,5)-(4,5)-(4,4)一(5,4)-(5,3);(3,5)一(3,4)-(3,3)-(4,3)-(5,3);根据描述的情景找出表示地点的数量学生举例说明生活中的类似确定点的我位置的例子明确数对的表示含义和格式寻找规律确定路线真的不掉线吗?、??9?9 9?1.在教室里,根据座位图,确定数学课代表的位置2.教 材46页练
36、习三.方法归类常见的确定平面上的点位置常用的方法(1)以某一点为原点(0,0 )将平面分成若干个小正方形的方格,利用点所在的行和列的位置来确定点的位置。(2)以某一点为观察点,用方位角、目标到这个点的距离这两个数来确定目标所在的位置。1 .如图,A点为原点(0,0),则B点 记 为(3,12 .如图,以灯塔A为观测点,小岛B在灯塔A北偏 东45,距灯塔3 k m 处。例2如图是某次海战中敌我双方舰艇对峙示意图,对我方舰艇来说:(1)北偏东方向上有哪些目标?要想确定敌舰B的位置,还需要什么数据?(2 )距我方潜 艇 图 上 距 离 为1cm处 的 敌 舰 有 哪 几艘?政 府 的 什 么 方向,
37、怎样确(3)要 确 定 每 艘 敌 舰 的 位 置,各需 要 几 个 数 据?巩 固 练 习 1.如 图 是 某 城 市 市 区 的 一 部分 示 意 图,对 市 政 府 来 说:(1)北 偏 东60的 方 向 有 哪 些 单位?要 想 确 定 单 位 的 位 置。还 需 要 哪 些数 据?真 的 不 掉 线吗?、?9?9?9 9?(2)火 车 站 与 学 校 分 别 位 于 市结合实际问题归纳方法学生尝试描述位置定他们的位置?2.如图,马所处的位置 为(2,3).真的不掉线(1)你能吗?、?表示出象的位置吗?(2)写出马的下一步可以到达的位置。小结3.为什么要用有序数对表示点的位 置,没有顺
38、序可以吗?4.几种常用的表示点位置的方法.作业必 做 题:教 科 书4 9页:1题课后小记:仿照前面方法确定位置关系真的不掉线吗?、?9 9 9 9 9 9 9?可以变化出其他的象棋盘上的位置,也可以引申到围棋盘或其他棋类。真的不掉线吗?、?9 9 9 7 9 9?6.1.2平面直角坐标系 教学目标13.认识平面直角坐标系,了解点的坐标的意义,会用坐标表示点,能画出点的坐标位14.渗透对应关系,提高学生的数感.教学重点与难点重点:平面直角坐标系和点的坐标.难点:正确画坐标和找对应点.教学设计 设计说明一.利用已有知识,引 入1.如图,怎样说明数轴上点A和点B的位置,2.根据下图,你能正确说出各
39、个象棋子的位置吗?二.明确概念平面直角坐标系:平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系.水平的数轴称为X轴)或横轴,习惯上取向右为正方向;竖直的数轴 为y轴或纵轴,取向上方向为真的不掉线吗?、?由数轴的表示引入,到两个数轴和有序数对。从学生熟悉的物品入手,引申到平面直角坐标系。描述平面直角坐标系特征和画法正 方 向;两 个 坐 标 轴 的 交 点 为 平 面直 角 坐 标 系 的 原 点。点 的 坐 标:我 们 用 一 对 有 序 数 对 表示 平 面 上 的 点,这 对 数 叫 坐 标。表 示 方法 为(a,b).a是 点 对 应 横 轴 上 的 数 值,b是 点 在 纵 轴
40、 上 对 应 的 数 值。例1写 出 图 中A、B、C、D点的坐标。建 立 平 面 直 角 坐 标 系 后,平 面 被 坐标 轴 分 成 四 部 分,分 别 叫 第 一 象 限,第二 象 限,第 三 象 限 和 第 四 象 限。吗?、??9?7?你能说出例1中各点在第几 象 限 吗?例2在平面 直 角 坐 标 系 中描 出 下 列 各 点。()A(3,4);B(-l,2);C(-3,-2);D (2,-2)问 题1:各象 限 点 的 坐 标 有什 么 特 征?真 的 不 掉 线练习:教 材49页:练 习1,2。1.平面直角坐标系;三.深入探索2.点的坐标及其表示教 材48页:探索:1 各象识别
41、坐标和点的位置关系,以及由限内点的坐标的坐标判断两点的关系以及两点所确定特征的直线的位置关系。4.坐标 巩固练习的简单应用3.教 材49页习题6.1第1 作业题必做题:教4.教 材50页第2,4,5,科 书50页:3题6。(教 材51 小结页综合运用7,8,9,10为 练 习 课 内 容)课后小记:明 确 点 的 坐标 的 表 示 法真 的 不 掉 线吗?、?99?99?99仿照例题,画坐标轴,描点,要求能正确画平面直角坐标系通过探究,发现坐标不但能代表点的位置,而且能反映他所在的直线的特征6.2.1用坐标表示地理位置 教学目标1.知识技能了解用平面直角坐标系来表示地理位置的意义及主要过程;培
42、养学生解决实际问题的能力.2.数学思考通过学习如何用坐标表示地理位置,发展学生的空间观念.3.解决问题通过学习,学生能够用坐标系来描述地理位置.4.情感态度通过用坐标系表示实际生活中的一些地理位置,培养学生的认真、严谨真的不掉线吗?、?的做事态度.教学重点与难点1.重点:利用坐标表示地理位置.2.难点:建立适当的直角坐标系,利用平面直角坐标系解决实际问题.教学过程一、创设问题情境观察:教材第54页图6.2-1.今天我们学习如何用坐标系表示地理位置,首先我们来探究以下问题.二、师生互动,探究用坐标表示地理位置的方法活 动1:根据以下条件画一幅示意图,指出学校和小刚家、小强家、小敏家的位置.小刚家
43、:出校门向东走150米,再向北走200米.小强家:出校门向西走200米,再向北走350米,最后再向东走50米.小敏家:出校门向南走100米,再向东走300米,最后向南走75米.问题:如何建立平面直角坐标系呢?以何参照点为原点?如何确 定x轴、y轴?如何选比例尺来绘制区域内地点分布情况平面图?小刚家、小强家、小敏家的位置均是以学校为参照物来描述的,故选学校位置为原点.根据描述,可以以正东方向为X轴,以正北方向为y轴建立平面直角坐标系,并取比例尺1:1 0 0 0 0 (即图中1 c m相当于实际中1 0 0 0 0 c m,即1 0 0米).真的不掉线吗?、?由学生画出平面直角坐标系,标出学校的
44、位置,即(0,0).引导学生一同完成示意图.问题:选取学校所在位置为原点,并以正东、正北方向为x轴、y轴的正方向有什么优点?可以很容易地写出三位同学家的位置.活 动2:归纳利用平面直角绘制区域内一些地点分布情况平面图的过程.经过学生讨论、交流,教师适当引导后得出结论:(1)建立坐标系,选择一个适当的参照点为原点,确 定X轴、y轴的正方向;(2)根据具体问题确定适当的比例尺,在坐标轴上标出单位长度;(3)在坐标平面内画出这些点,写出各点的坐标和各个地点的名称.应注意的问题:用坐标表示地理位置时,一是要注意选择适当的位置为坐标原点,这里所说的适当,通常要么是比较有名的地点,要么是所要绘制的区域内较
45、居中的位置;二是坐标轴的方向通常是以正北为纵轴的正方向,这样可以使东西南北的方向与地理位置的方向一致;三是要注意标明比例尺和坐标轴上的单位长度.有时,由于地点比较集中,坐标平面又较小,各地点的名称在图上可以用代号标出,在图外另附名称.(举 例)活 动3:进一步理解如何用坐标表示地理位置.展示问题:(教材第62页,公园平面图)真的不掉线吗?、?春天到了,初 一(13)班组织同学到人民公园春游,张明、王丽、李华三位同学和其他同学走散了,同学们已经到了中心广场,而他们仍在牡丹园赏花,他们对着景区示意图在电话中向老师告诉了他们的位置.张明:“我这里的坐标是(300,300)”.王丽:“我这里的坐标是(
46、200,300)李华:“我在你们东北方向约420米处”.实际上,他们所说的位置都是正确的.你知道张明和王丽同学是如何在景区示意图上建立的坐标系吗?你理解李华同学所说的“东北方向约420米处”吗?用他们的方法,你能描述公园内其他景点的位置吗?让学生分别画出直角坐标系,标出其他景点的位置.三、小结让学生归纳说出如何利用坐标表示地理位置.四、课后作业教材第60页第5题、第8题.五、备选练习1.根据以下条件画一幅示意图,标出某一公园的各个景点.菊花园:从中心广场向北走150米,再向东走150米;湖心亭:从中心广场向西走150米,再向北走100米;松风亭:从中心广场向西走100米,再向南走50米;育德泉
47、:从中心广场向北走200米.2.教材第65页第4题.课后真的不掉线吗?、?9 9 9 9 9 9?小记:6.2.2用坐标表示平移 教学目标1.知识技能掌握坐标变化与图形平移的关系;能利用点的平移规律将平面图形进行平移;会根据图形上点的坐标的变化,来判定图形的移动过程.2.数学思考发展学生的形象思维能力,和数形结合的意识.3.解决问题用坐标表示平移体现了平面直角坐标系在数学中的应用.4.情感态度培养学生探究的兴趣和归纳概括的能力,体会使复杂问题简单化.教学重点与难点1.重点:掌握坐标变化与图形平移的关系.2.难点:利用坐标变化与图形平移的关系解决实际问题.教学过程一、引言上节课我们学习了用坐标表
48、示地理位置,本节课我们继续研究坐标方法的另一个应用.二、新课展示问题:教材第56页图.(1)如图将点A (-2,-3)向右平移5个单位长度,得到点A】,在图上标出它的坐标,把点A向上平移4个单位长度呢?(2 )把 点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?规律:在平面直角坐标系中,将 点(x,y)向 右(或左)平移a个单位长度,可以得到对应点(x+a,y )(或(,);将 点(x,y)向上(或 下)平移b个单位长度,可以得到对应点(x,y+b)(或(,).教师说明:对一个图形进行平移,这个图形
49、上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.例 如 图(1),三角形A B C三个顶点坐标分别是A (4,3),B(3,1),C (1,2).(1)将三角形A B C三个顶点的横坐标后减去6,纵坐标不变,分别得到点A、B i、C i,依次连接A】、B i、C i各点,所得三角形A B B与三角形A B C的大小、形状和位置上有什么关系?(2)将三角形A B C三个顶点的纵坐标都减去5,横坐标不变,分别得到点A?、B 2、C 2,依次连接A 2、B 2、C 2各点,所得三角形A 2 B 2 c2与三角形A B C的大小、形状和位置上有什么关系?引导学生动手操作,按要求画出图形后,解答此例题.解:如 图(2),所得三角形AB3与三角形A B C的大小、形状完全相同,三角形ABG可以看作将三角形A B C向左平移6个单位长度得到.类似地,三角形A 2B 2c2与三角形A B C的大小、形状完全相同,它可以看作将三角形A B C向下平移5个单位长度得到.思考题:由学生动手画图并解答.归纳:三、练习教材第58页练习;习题6.2 中第1、2、4 题.四、作业教材第59页 第 3题.课后小记:真的不掉线吗?、?
限制150内