教案.教材-—最新2016-2017学年人教版初中七年级数学上册教案(收藏版).doc
《教案.教材-—最新2016-2017学年人教版初中七年级数学上册教案(收藏版).doc》由会员分享,可在线阅读,更多相关《教案.教材-—最新2016-2017学年人教版初中七年级数学上册教案(收藏版).doc(58页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1.3.1 有理数的加法(1)第一课时 三维目标 一、知识与技能 理解有理数加法的意义,掌握有理数加法法则,并能准确地进行有理数的加法运算 二、过程与方法 引导学生观察符号及绝对值与两个加数的符号及其他绝对值的关系,培养学生的分类、归纳、概括能力 三、情感态度与价值观 培养学生主动探索的良好学习习惯 教学重、难点与关键 1重点:掌握有理数加法法则,会进行有理数的加法运算 2难点:异号两数相加的法则 3关键:培养学生主动探索的良好学习习惯 四、教学过程 一、复习提问,引入新课 1有理数的绝对值是怎样定义的?如何计算一个数的绝对值? 2比较下列每对数的大小 (1)-3和-2; (2)-5和5; (
2、3)-2与-1;(4)-(-7)和-7 五、新授 在小学里,我们已学习了加、减、乘、除四则运算,当时学习的运算是在正有理数和零的范围内然而实际问题中做加法运算的数有可能超出正数范围,例如,足球循环赛中,可以把进球数记为正数,失球数记为负数,它们的和叫做净胜球数本章前言中,红队进4个球,失2个球;蓝队进1个球,失1个球,那么哪个队的净胜球多呢? 要解决这个问题,先要分别求出它们的净胜球数 红队的净胜球数为:4+(-2); 蓝队的净胜球数为:1+(-1) 这里用到正数与负数的加法 怎样计算4+(-2)呢? 下面借助数轴来讨论有理数的加法 看下面的问题: 一个物体作左右方向的运动,我们规定向左为负、
3、向右为正 (1)如果物体先向右运动5m,再向右运动3m,那么两次运动后总的结果是什么? 我们知道,求两次运动的总结果,可以用加法来解答这里两次都是向右运动,显然两次运动后物体从起点向右运动了8m,写成算式就是:5+3=8 这一运算在数轴上可表示,其中假设原点为运动的起点(如下图) (2)如果物体先向左运动5m,再向左运动3m,那么两次运动后总的结果是什么? 显然,两次运动后物体从起点向左运动了8m,写成算式就是:(-5)+(-3)=-8 这个运算在数轴上可表示为(如下图): (3)如果物体先向右运动5m,再向左运动3m,那么两次运动后物体与起点的位置关系如何?在数轴上我们可知物体两次运动后位于
4、原点的右边,即从起点向右运动了2m(如下图) 写成算式就是:5+(-3)=2 探究: 还有哪些可能情形?请同学们利用数轴,求以下情况时物体两次运动的结果: (4)先向右运动3m,再向左运动5m,物体从起点向_运动了_m要求学生画出数轴,仿照(3)画出示意图 写出算式是:3+(-5)=-2 (5)先向右运动5m,再向左运动5m,物体从起点向_运动了_m 先向右运动5m,再向左运动5m,物体回到原来位置,即物体从起点向左(或向右)运动了0m,因为+0=-0,所以写成算式是:5+(-5)=0 (6)先向左运动5m,再向左运动5m,物体从起点向_运动了_m 同样,先向左边运动5m,再向右运动5m,可写
5、成算式是:(-5)+5=0 如果物体第1秒向右(或左)运动5m,第2秒原地不动,两秒后物体从起点向右(或左)运动了多少呢?请你用算式表示它 可写成算式是:5+0=5或(-5)+0=-5 从以上写出的个式子中,你能总结出有理数加法的运算法则吗? 引导学生观察和的符号和绝对值,思考如何确定和的符号?如何计算和的绝对值? 算式是小学已学过的两个正数相加观察算式,两个加数的符号相同,都是“”号,和的符号也是“”号与加数符号相同;和的绝对值8等于两个加数绝对值的和,即-5+-3=-8 由可归结为: 同号两数相加,取相同的符号,并把绝对值相加 例如(-4)+(-5)=-(4+5)=-9 观察算式、是两个互
6、为相反数相加,和为0 由算式可归结为: 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得0 由算式知,一个数同0相加,仍得这个数 综合上述,我们发现有理数的加法法则,让学生朗读课本第18页中“有理数的加法法则” 一个有理数由符号与绝对值两部分组成,进行加法运算时,必先确定和的符号,再确定和的绝对值 例1:计算 (1)(-3)+(-5); (2)(-4.7)+2.9; (3)+(-0.125) 分析:本题是有理数加法,所以应遵循加法法则,按判断类型,确定符号、计算绝对值的步骤进行计算(1)是同号两数相加,按法则1,取原加数的符号“”,并把绝
7、对值相加(2)是绝对值不相等的异号两数相加(3)是绝对值相等的两数相加,根据法则2进行计算 解:(1)(-3)+(-5)=-(3+5)=-8; (2)(-4.7)+2.9=-(4.7-2.9)=-1.8; (3)+(-0.125)=+(-)=0 例2:足球循环赛中,红队胜黄队4:1,黄队胜蓝队1:0,蓝队胜红队1:0,计算各队的净胜球数 分析:净胜球数是进球数与失球数的和,我们可以分别用正数、负数表示进球数和失球数红队胜黄队4:1表示红队进4球,失1球,黄队进1球失4球 解:每个队的进球总数记为正数,失球总数记为负数 三场比赛中,红队共进4球,失2球,净胜球数为: (+4)+(-2)=+(4-
8、2)=2; 黄队共进2球,失4球,净胜球数为:新 课 标 第 一 网 (+2)+(-4)=-(4-2)=-2; 蓝队共进1球,失1球,净胜球数为: (+1)+(-1)=0 以上讲解有理数加法时,严格按照:先判断类型,然后确定和的符号,最后计算和的绝对值,这三步骤进行 六、巩固练习 课本第18页练习1、2题 七、课堂小结 有理数的加法法则指出进行有理数加法运算,首先应该先判断类型,然后确定和的符号,最后计算和的绝对值类型为异号两数相加,和的符号依法则取绝对值较大的加数的符号,并把绝对值相减,因为正负互相抵消了一部分有理数加法还打破了算术数加法中和一定大于加数的常规 八、作业布置 1课本第24页习
9、题13第1题九、板书设计:1.3.1 有理数的加法(1)第一课时1、同号两数相加,取相同的符号,并把绝对值相加 绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值,互为相反数相加得02、随堂练习。3、小结。4、课后作业。十、课后反思1.3.1 有理数的加法(2)第二课时 三维目标 一、知识与技能 (1)能运用加法运算律简化加法运算 (2)理解加法运算律在加法运算中的作用,培养学生的观察能力和思维能力 二、过程与方法 经历探索有理数的加法运算律的过程,培养学生的观察能力和思维能力 三、情感态度与价值观 体会有理数加法运算律的应用价值 教学重、难点与关键 1重点
10、:有理数加法运算律 2难点:灵活运用加法运算律 3关键:正确理解加法运算律在加法运算中的作用 教具准备 投影仪 四、教学过程 一、复习提问,引入新课 1叙述有理数的加法法则 2在小学里,数的加法有哪些运算律? 五、新授 在小学里,数的加法满足交换律、结合律 如:5+3.5=3.5+5,(5+3.5)+2.5=5+(3.5+2.5) 引进负数后,这些运算律还适用吗? 探索: 例1计算:30+(-20),(-20)+30 两次所得的和相同吗? 换几个加数试一试,让学生自己得出:有理数的加法中,两个数相加,交换加数的位置和不变,即 加法交换律:a+b=b+a 例2计算:8+(-5)+(-4),8+(
11、-5)+(-4) 两次所得的和相同吗?换几个加数再试一试 从而得到:有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变,即 加法结合律:(a+b)+c=a+(b+c) 上述a、b、c表示任意有理数,可以是正数,也可以是负数 这样,多个有理数相加可以任意交换加数位置,也可以先把其中的几个数相加,使计算简化 例3计算:16+(-25)+24+(-35) 分析:先观察题目中数据特点,根据运算律,选择合理途径 本题采用正、负数分开相加的方法 解:原式(16+24)+(-25)+(-35) =40+(-60) =-20 例4每袋小麦的标准重量为90千克,10袋小麦称重记录如课本图
12、13-3所示(课本第19页),与标准重量比较,10袋小麦总计超过多少千克或不足多少千克?10袋小麦的总重量是多少? 分析:怎样求这10袋小麦的总重量呢?这是有理数加法在实际中的应用,本题有两种解法,教学时可先让学生相互交流,提出自己的想法,对不同的解法进行比较 解法1:先计算10袋小麦的总重量 91+91+91.5+89+91.2+91.3+88.7+88.8+91.8+91.1=905.4, 再计算标准重量:9010=900 所以这10袋小麦总计超过905.4-900=5.4(千克) 解法2:先计算总误差,然后再求10袋小麦的总重量将每袋小麦超过标准重量的千克数记作正数,不足的千克数记作负数
13、,10袋小麦的对应的数为+1,+1,+1.5,-1,+1.2,+1.3,-1.3,-1.2,+1.8,+1.1.?+1+1+1.5+(-1)+1.2+1.3+(1.3)+(-1.2)+1.8+1.1 =1+(-1)+1.2+(-1.2)+1.3+(-1.3)+(1+1.5+1.8+1.1) =5.4 9010+5.4=905.4 所以10袋小麦总计超过标准5.4千克,总重量为905.4千克 五、巩固练习 1课本第20页,练习1、2 六、课堂小结 本节课我们探索了有理数加法的运算律,灵活运用加法的运算律使运算简便一般情况下,将互为相反数的数结合相加;同分母的分数能凑整的数结合;正数、负数分别相加
14、,以使计算简便 七、作业布置 1课本第25页习题13第2题,第26页第9、10、12题九、板书设计:1.3.1 有理数的加法(2)第二课时1、有理数的加法中,三个数相加,先把前两个数相加,或者先把后两个数相加,和不变。 加法结合律:(a+b)+c=a+(b+c) 上述a、b、c表示任意有理数,可以是正数,也可以是负数2、随堂练习。3、小结。4、课后作业。十、课后反思1.3.2 有理数的减法(1)第三课时 三维目标 一、知识与技能 (1)理解并掌握有理数的减法法则,能进行有理数的减法运算 (2)通过把减法运算转化为加法运算,让学生了解转化思想 二、过程与方法 经历探索有理数的加法运算律的过程,培
15、养学生的观察能力和思维能力 三、情感态度与价值观 体会有理数加法运算律的应用价值 教学重、难点与关键 1重点:掌握有理数减法法则,能进行有理数的减法运算 2难点:探索有理数减法法则,能正确完成减法到加法的转化 3关键:正确完成减法到加法的转化 四、教学过程 一、复习提问,新课引入 1计算 (1)(-5.2)+(-4.8); (2)(-4)+5; (3)(-13)+13; (4)(+4)+(-7.5) 2填空 (1)_+3=10; (2)30+_=27; (3)_+(-3)=10; (4)(-13)+_=6 五、新授 实际问题中有时还要涉及有理数的减法,例如,某地一天的气温是-34,这天的温差(
16、最高气温减最低气温,单位:)就是4-(-3),这里用到正数与负数的减法,你会计算它吗?(鼓励学生探索) 可以先从温度计看出4比-3高7 另外,我们知道减法和加法是互为逆运算计算4-(-3),就是要求出一个数x,使x与-3的和等于4,因为7+(-3)=4,所以 4-(-3)=7 另外4+(+3)=7, 比较、两式,你发现了什么? 发现:4-(-3)=4+(+3) 这就是说减法可以转化为加法,如何转化呢? 减-3相当于加3,即加上“-3”的相反数 换几个数再试一试,把4换成0,-1,-5,用上面的方法考虑 0-(-3),(-1)-(-3),(-5)-(-3) 因为(+3)+(-3)=0,所以0-(
17、-3)=+3, 又0+(+3)=+3,所以0-(-3)=0+(+3), 同样,可得(-1)-(-3)=(-1)+(+3),(-5)-(-3)=(-5)+(+3) 这些数减-3的结果与它们加+3的结果仍然相同 计算: (1)9-8,9+(-8);(2)15-7,15+(-7),从中又发现了什么? 通过计算发现: 9-8=9+(-8),15-7=15+(-7) 归纳:通过上述讨论,得出: 有理数的减法可以转化为加法来进行“相反数”是转化的桥梁 有理数减法法则: 减去一个数,等于加上这个数的相反数 用式子表示为:a-b=a+(-b) 例5:计算: (1)(-3)-(-5); (2)0-7; (3)7
18、.2-(-4.8); (4)(-3)-5分析:以上是有理数的减法,按减法法则,把减法转化为加法 (4)(-3)-5=(-3)+(-5)=-8 强调:减号变加号、减数变相反数,必须同时改变,(4)题中减数的符号为“”号,省略没有定 六、课堂练习 1课本第23页练习1、2题,第26页第7、8题 2差数一定比被减数小吗? 提示:不一定,例如(-7)-(-5)=(-7)+(+5)=-2,-2-7 七、课堂小结 引进负数后,任意两个有理数都可以求出它们的差,结果可能为正数(大数减去小数),也可能为负数(小数减去大数),还可能为0(相等的两数相减),学习有理数减法,关键在于处理好两个“变”字;(1)改变运
19、算符号即把减法转化为加法(2)改变减数的符号即减数变为它的相反数,这两个“变”要同时进行,而被减数不变 八、作业布置 1课本第25页至第26页,习题13第3、4、11、12题九、板书设计:1.3.2 有理数的减法(1)第三课时1、有理数的减法可以转化为加法来进行“相反数”是转化的桥梁 有理数减法法则: 减去一个数,等于加上这个数的相反数 用式子表示为:a-b=a+(-b)2、随堂练习。3、小结。4、课后作业。十、课后反思1.3.2 有理数的减法(2)第四课时 三维目标 一、知识与技能 理解有理数加减法可以互相转化,能把有理数加减混合运算统一为加法运算,灵活应用运算律进行计算 二、过程与方法 经
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 教案 教材 最新 2016 2017 学年 人教版 初中 七年 级数 上册 收藏
限制150内