《2015年浙教版初中数学八年级下册知识点总结.docx》由会员分享,可在线阅读,更多相关《2015年浙教版初中数学八年级下册知识点总结.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、八年级下册知识点及典型例题第一章 二次根式1二次根式:一般地,式子叫做二次根式.注意:(1)若这个条件不成立,则 不是二次根式;(2)是一个重要的非负数,即; 0.2重要公式:(1),(2) ;注意使用.3积的算术平方根:,积的算术平方根等于积中各因式的算术平方根的积;注意:本章中的公式,对字母的取值范围一般都有要求.4二次根式的乘法法则: .5二次根式比较大小的方法:(1)利用近似值比大小;(2)把二次根式的系数移入二次根号内,然后比大小;(3)分别平方,然后比大小.6商的算术平方根:,商的算术平方根等于被除式的算术平方根除以除式的算术平方根.7二次根式的除法法则:(1);(2);(3)分母
2、有理化:化去分母中的根号叫做分母有理化;具体方法是:分式的分子与分母同乘分母的有理化因式,使分母变为整式.8常用分母有理化因式: , ,它们也叫互为有理化因式.9最简二次根式:(1)满足下列两个条件的二次根式,叫做最简二次根式, 被开方数的因数是整数,因式是整式, 被开方数中不含能开的尽的因数或因式;(2)最简二次根式中,被开方数不能含有小数、分数,字母因式次数低于2,且不含分母;(3)化简二次根式时,往往需要把被开方数先分解因数或分解因式;(4)二次根式计算的最后结果必须化为最简二次根式.10同类二次根式:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式.11
3、二次根式的混合运算:(1)二次根式的混合运算包括加、减、乘、除、乘方、开方六种代数运算,以前学过的,在有理数范围内的一切公式和运算律在二次根式的混合运算中都适用;(2)二次根式的运算一般要先把二次根式进行适当化简,例如:化为同类二次根式才能合并;除法运算有时转化为分母有理化或约分更为简便;使用乘法公式等.第二章 一元二次方程 1、认识一元二次方程:概念:只含有一个未知数,并且可以化为 (为常数,)的整式方程叫一元二次方程。构成一元二次方程的三个重要条件:、方程必须是整式方程(分母不含未知数的方程)。 如:是分式方程,所以不是一元二次方程。、只含有一个未知数。、未知数的最高次数是2次。 2、一元
4、二次方程的一般形式:一般形式: (),系数中,一定不能为0,、则可以为0,所以以下几种情形都是一元二次方程:、如果,则得,例如:;、如果,则得,例如:;、如果,则得,例如:;、如果,则得,例如:。其中,叫做二次项,叫做二次项系数;叫做一次项,叫做一次项系数;叫做常数项。任何一个一元二次方程经过整理(去括号、移项、合并同类项)都可以化为一般形式。 例题:将方程化成一元二次方程的一般形式. 解: 去括号,得: 移项、合并同类项,得: (一般形式的等号右边一定等于0) 3、一元二次方程的解法:(1) 、直接开方法:(利用平方根的定义直接开平方求一元二次方程的解) 形式:(2)、配方法:(理论依据:根
5、据完全平方公式:,将原方程配成的形式,再用直接开方法求解.) (3)、公式法:(求根公式:) (4) 、分解因式法:(理论依据:,则或;利用提公因式、运用 公式、十字相乘等分解因式方法将原方程化成两个因式相乘等于0的形式。) 4、一元二次方程的应用 例1 :商场某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品?商场获得的日盈利是多少?(2)在上述条件不变、商品销售正常的情况下,每件商品的销售价定为多少元时,商场日盈利可
6、达到1600元?(提示:盈利售价进价)分析:这是一个一元二次方程应用题,关键在于理清数量关系,列出方程。(1)解:销售件数: 日获利: (2)解:设每件商品的销售价定为元 由题意得: 整理得:即: 答:每件商品的销售价定为160元时,商场日盈利可达1600元。例 2 如图,用同样规格黑白两色的正方形瓷砖铺设长方形地面,请观察下列图形,并解答有关问题:n=1n=2n=3(1)铺设地面所用瓷砖的总块数为 (用含n的代数式表示,n表示第n个图形)(2)上述铺设方案,铺一块这样的长方形地面共用了506块瓷砖,求此时n的值;(3)是否存在黑瓷砖与白瓷砖块数相等的情形?请通过计算加以说明。分析:这是一个图
7、形数列题,解题关键在于理清数量关系。黑瓷砖由四部分组成,比较难求。所以先考虑白瓷砖数,观察白瓷砖数量变化,不难发现,第个图形中白瓷砖数为。同时再观察整个图形瓷砖数量变化,易得,第个图形中总瓷砖数为块。解:(1) (2)由题意得:,即 (不合题意,舍去)。 (3) 白瓷砖:(块)黑瓷砖:(块)由题意得: 解得:(不合题意,舍去) 不存在黑瓷砖与白瓷砖块数相等的情形。 第三章 数据分析初步 1、平均数平均数是衡量样本(求一组数据)和总体平均水平的特征数,通常用样本的平均数去估计总体的平均数。平均数:把一组数据的总和除以这组数据的个数所得的商。平均数反映一组数据的平均水平,平均数分为算术平均数和加权
8、平均数。一般的,有n个数我们把叫做这n个数的算术平均数简称平均数,记做(读作“x拔”) (定义法) 当所给一组数据中有重复多次出现的数据,常选用加权平均数公式。 且f1+f2+fk=n (加权法),其中表示各相同数据的个数,称为权,“权”越大,对平均数的影响就越大,加权平均数的分母恰好为各权的和。 当给出的一组数据,都在某一常数a上下波动时,一般选用简化平均数公式,其中a是取接近于这组数据平均数中比较“整”的数; 2、众数与中位数 平均数、众数、中位数都是用来描述数据集中趋势的量。平均数的大小与每一个数据都有关,任何一个数的波动都会引起平均数的波动, 当一组数据中有个数据太高或太低,用平均数来
9、描述整体趋势则不合适,用中位数或众数则较合适。中位数与数据排列有关,个别数据的波动对中位数没影响; 当一组数据中不少数据多次重复出现时,可用众数来描述。众数:在一组数据中,出现次数最多的数(有时不止一个),叫做这组数据的众数中位数:将一组数据按大小顺序排列,把处在最中间的一个数(或两个数的平均数)叫做这组数据的中位数例1、 求下面一组数据的平均数、中位数、众数。 10,20,80,40,30,90,50,40,50,40。 3、方差与标准差 用“先平均,再求差,然后平方,最后再平均”得到的结果表示一组数据偏离平均值的情况,这个结果叫方差,计算公式是 s2=(x1-)2+(x2-)2+(xn-)
10、2; 一般的,一组数据的方差的算术平方根 S=称为这组数据的标准差。标准差 方差和标准差都是反映一组数据的波动大小的一个量,其值越大,波动越大,也越不稳定或不整齐。或者说,离散程度小就越稳定,离散程度大就不稳定。第四章 平行四边形1、多边形 四边形的内角和等于 n边形的内角和为 (n3)。 n边形的对角线的总条数 (n3)。 2、平行四边形的性质1、 叫做平行四边形。平行四边形用符号“ ”表示。2、平行四边形的角有什么关系: , 。3、平行四边形的边有什么关系: , 。4、平行四边形的对角线有什么关系: 。3、中心对称1、如果一个图形绕一个点旋转180后,所得到的图形能够和原来的图形互相重合,
11、那么这个图形叫做中心对称(point symmetry)图形,这个点叫对称中心。2、对称中心平分连结两个对称点的线段4、平行四边形的判定1、两组对边分别平行的四边形是平行四边形2、一组对边平行且相等的四边形是平行四边形3、两组对边分别相等的四边形是平行四边形4、对角线互相平分的四边形是平行四边形5、三角形的中位线1、 叫做三角形的中位线。2、三角形的中位线的定理是 。 6、反证法 定义:在证明数学问题时,先假设命题结论的反面成立,在这个前提下,若推出的结果与定义、定理、公理相矛盾,或与命题中的已知条件相矛盾,或与假设相矛盾,从而说明命题结论的反面不可能成立,由此断定命题的结论成立,这种证明方法
12、叫做反证法。反证法的步骤:1、假设命题反面成立;2、从假设出发,经过推理得出和反面命题矛盾,或者与定义、公理、定理矛盾;3、得出假设命题不成立是错误的,即所求证命题成立.简而言之就是“反设、归谬、结论”矛盾的来源:1、与原命题的条件矛盾;2、导出与假设相矛盾的命题;3、导出一个恒假命题.适用与待证命题的结论涉及“不可能”、“不是”、“至少”、“至多”、“唯一”等字眼时.第五章 特殊平行四边形矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形性质:矩形的四个角都是直角;矩形的对角线相等矩形的对角线相等且互相平分。特别提示:直角三角形斜边上的中线等于斜边的一半;矩形具有平行四边形的一切性质判定
13、方法:有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)性质:菱形的四条边都相等菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。判定方法:一组邻边相等的平行四边形是菱形对角线互相垂直平分的平行四边形是菱形对角线互相垂直平分的四边形是菱形四条边都相等的四边形是菱形正方形:定义:四条边都相等,四个角都是直角的四边形是正方形。性质:正方形既有矩形的性质,又有菱形的性质。正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点
14、。判定:有一组邻边相等的矩形是正方形;有一个角是直角的菱形是正方形;平行四边形、矩形、菱形、正方形的性质:平行四边形矩形菱形正方形图形性质1对边 且 ;2对角 ; 邻角 ;3对角线 ;1对边 且 ;2对角 且四个角都是 ;3对角线 ;1对边 且四条边都 ;2对角 ;3对角线 且每条对角线 ;1对边 且四条边都 ;2对角 且四个角都是 ;3对角线 且每条对角线 ;面积第六章 反比例函数 (一)反比例函数的概念1()可以写成()的形式,注意自变量x的指数为,在解决有关自变量指数问题时应特别注意系数这一限制条件;2()也可以写成xy=k的形式,用它可以迅速地求出反比例函数解析式中的k,从而得到反比例
15、函数的解析式;3反比例函数的自变量,故函数图象与x轴、y轴无交点(二)反比例函数的图象在用描点法画反比例函数的图象时,应注意自变量x的取值不能为0,且x应对称取点(关于原点对称)(三)反比例函数及其图象的性质 k0k0图像双曲线象限第一、三象限第二、四象限增减性y随x的增大而减小y随x的增大而增大变化趋势双曲线无限接近于x、y轴,但永远不会与坐标轴相交对称性双曲线既是轴对称图形又是中心对称图形.(图象关于原点对称,即若(a,b)在双曲线的一支上,则(,)在双曲线的另一支上;图象关于直线对称,即若(a,b)在双曲线的一支上,则(,)和(,)在双曲线的另一支上)面积不变性任意一组变量的乘积是一个定值,即xy=k长方形面积 m n K 4k的几何意义如图1,设点P(a,b)是双曲线上任意一点,作PAx轴于A点,PBy轴于B点,则矩形PBOA的面积是(三角形PAO和三角形PBO的面积都是)如图2,由双曲线的对称性可知,P关于原点的对称点Q也在双曲线上,作QCPA的延长线于C,则有三角形PQC的面积为 图1 图25说明:(1)双曲线的两个分支是断开的,研究反比例函数的增减性时,要将两个分支分别讨论,不能一概而论(2) 直线与双曲线的关系: 当时,两图象没有交点;当时,两图象必有两个交点,且这两个交点关于原点成中心对称
限制150内