2017年北京市高考数学试卷(文科).docx
《2017年北京市高考数学试卷(文科).docx》由会员分享,可在线阅读,更多相关《2017年北京市高考数学试卷(文科).docx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2017年北京市高考数学试卷(文科)一、选择题1已知全集U=R,集合A=x|x2或x2,则UA=()A(2,2)B(,2)(2,+)C2,2D(,22,+)2若复数(1i)(a+i)在复平面内对应的点在第二象限,则实数a的取值范围是()A(,1)B(,1)C(1,+)D(1,+)【点评】本题考查了复数的运算法则、几何意义、不等式的解法,考查了推理能力与计算能力,属于基础题3执行如图所示的程序框图,输出的S值为()A2BCD4若x,y满足,则x+2y的最大值为()A1B3C5D95已知函数f(x)=3x()x,则f(x)()A是偶函数,且在R上是增函数B是奇函数,且在R上是增函数C是偶函数,且在
2、R上是减函数D是奇函数,且在R上是减函数6某三棱锥的三视图如图所示,则该三棱锥的体积为()A60B30C20D10【解答】解:由三视图可知:该几何体为三棱锥,该三棱锥的体积=10故选:D【点评】本题考查了三棱锥的三视图、体积计算公式,考查了推理能力与计算能力,属于基础题7设,为非零向量,则“存在负数,使得=”是0”的()A充分而不必要条件B必要而不充分条件C充分必要条件D既不充分也不必要条件【解答】解:,为非零向量,存在负数,使得=,则向量,共线且方向相反,可得0反之不成立,非零向量,的夹角为钝角,满足0,而=不成立,为非零向量,则“存在负数,使得=”是0”的充分不必要条件故选:A8根据有关资
3、料,围棋状态空间复杂度的上限M约为3361,而可观测宇宙中普通物质的原子总数N约为1080,则下列各数中与最接近的是()(lg30.48)A1033B1053C1073D1093【分析】根据对数的性质:T=,可得:3=10lg3100.48,代入M将M也化为10为底的指数形式,进而可得结果【解答】解:由题意:M3361,N1080,根据对数性质有:3=10lg3100.48,M3361(100.48)36110173,=1093,故本题选:D【点评】本题解题关键是将一个给定正数T写成指数形式:T=,考查指数形式与对数形式的互化,属于简单题二、填空题9在平面直角坐标系xOy中,角与角均以Ox为始
4、边,它们的终边关于y轴对称,若sin=,则sin=推导出+=+2k,kZ,从而sin=sin(+2k)=sin,由此能求出结果【解答】解:在平面直角坐标系xOy中,角与角均以Ox为始边,它们的终边关于y轴对称,+=+2k,kZ,sin=,sin=sin(+2k)=sin=故答案为:【点评】本题考查角的正弦值的求法,考查对称角、诱导公式,正弦函数等基础知识,考查推理论证能力、运算求解能力、空间想象能力,考查数形结合思想、化归与转化思想,是基础题10若双曲线x2=1的离心率为,则实数m=2【分析】利用双曲线的离心率,列出方程求和求解m 即可【解答】解:双曲线x2=1(m0)的离心率为,可得:,解得
5、m=2故答案为:2【点评】本题考查双曲线的简单性质,考查计算能力11已知x0,y0,且x+y=1,则x2+y2的取值范围是,1解:x0,y0,且x+y=1,则x2+y2=x2+(1x)2=2x22x+1,x0,1,则令f(x)=2x22x+1,x0,1,函数的对称轴为:x=,开口向上,所以函数的最小值为:f()=最大值为:f(1)=22+1=1则x2+y2的取值范围是:,1故答案为:,112已知点P在圆x2+y2=1上,点A的坐标为(2,0),O为原点,则的最大值为6【解答】解:设P(cos,sin).=(2,0),=(cos+2,sin)则=2(cos+2)6,当且仅当cos=1时取等号故答
6、案为:613能够说明“设a,b,c是任意实数若abc,则a+bc”是假命题的一组整数a,b,c的值依次为1,2,3【解答】解:设a,b,c是任意实数若abc,则a+bc”是假命题,则若abc,则a+bc”是真命题,可设a,b,c的值依次1,2,3,(不唯一),故答案为:1,2,314某学习小组由学生和教师组成,人员构成同时满足以下三个条件:(i)男学生人数多于女学生人数;(ii)女学生人数多于教师人数;(iii)教师人数的两倍多于男学生人数若教师人数为4,则女学生人数的最大值为6该小组人数的最小值为12【解答】解:设男学生女学生分别为x,y人,若教师人数为4,则,即4yx8,即x的最大值为7,
7、y的最大值为6,即女学生人数的最大值为6设男学生女学生分别为x,y人,教师人数为z,则,即zyx2z即z最小为3才能满足条件,此时x最小为5,y最小为4,即该小组人数的最小值为12,故答案为:6,12三、解答题15已知等差数列an和等比数列bn满足a1=b1=1,a2+a4=10,b2b4=a5()求an的通项公式;()求和:b1+b3+b5+b2n1【分析】()利用已知条件求出等差数列的公差,然后求an的通项公式;()利用已知条件求出公比,然后求解数列的和即可【解答】解:()等差数列an,a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以an的通项公式:an=1+(n
8、1)2=2n1()由()可得a5=a1+4d=9,等比数列bn满足b1=1,b2b4=9可得b3=3,或3(舍去)(等比数列奇数项符号相同)q2=3,b2n1是等比数列,公比为3,首项为1b1+b3+b5+b2n1=16已知函数f(x)=cos(2x)2sinxcosx(I)求f(x)的最小正周期;(II)求证:当x,时,f(x)【解答】解:()f(x)=cos(2x)2sinxcosx,=(co2x+sin2x)sin2x,=cos2x+sin2x,=sin(2x+),T=,f(x)的最小正周期为,()x,2x+,sin(2x+)1,f(x)【点评】本题考查了三角函数的化简以及周期的定义和正
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2017 北京市 高考 数学试卷 文科
限制150内