新资本协议中违约概率模型的研究与应用.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《新资本协议中违约概率模型的研究与应用.docx》由会员分享,可在线阅读,更多相关《新资本协议中违约概率模型的研究与应用.docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、新资本协议中违约概率模型的研究与应用Research and Application of PD Model in New Basel Capital Accord 武剑王健内容摘要:巴塞尔新资本协议实施在即,新资本协议与以前版本的重大突破在于它倡导商业银行使用内部评级法(IRB)以加强风险监管的敏感性。而客户违约概率(PD)的准确计算正是内部评级法的核心内容。本文就详尽介绍了违约概率的概念、定义,计算违约概率的发展过程;并重点研究分析了一些较为成熟的违约概率计算模型和数学统计方法,并结合建行违约概率计算的应用提出一些经验之谈,同时对国内商业银行客户违约概率研究的发展提出了建设性的意见。关键词
2、:内部评级法违约概率违约数据背景巴塞尔新资本协议即将于2003年底正式公布,并拟于2006年在各成员国实施。新资本协议首次提出了涵盖“三大支柱”(资本充足率、市场监管和市场纪律)的监管框架,进一步充实了金融风险监管的内容和方式,这将对中国银行业未来发展产生重大和深远的影响。新资本协议的核心内容是内部评级法(IRB法),允许管理水平高的银行采用IRB法计算资本充足率,从而将资本充足率与银行信用风险的大小紧密结合起来。可以说,满足资本监管的IRB法代表了巴塞尔委员会认可的并希望商业银行,特别是大银行今后广泛采用的内部评级体系。IRB法代表了信用风险管理技术发展的大方向。在新协议的推动下,许多国家的
3、银行都在积极开发IRB法,力争在2006年达标。银监会也已经明确指出,各家商业银行应该尽早着手收集内部评级体系所需的各项必要信息,为今后采用定量分析方法监测、管理信用风险做好基础性工作。在一段时间之后,如银行条件具备,银监会将考虑使用内部评级法进行资本监管,并为银行改进风险管理提供激励机制。当前困扰国内商业银行应用内部评级法的主要障碍各家商业银行所面临的风险度量的技术差别和数据的缺失。新资本协议要求银行不断提高风险计量的精确性和敏感性,鼓励有条件的银行建立并使用内部评级体系,由此准确计算出交易对手的违约概率(PD)、违约损失率(LGD)、风险敞口(EAD)及敞口期限(M)等要素,由此确定风险资
4、产权重和资本充足率。因此准确计量这些风险指标对商业银行应用内部评级法就显得至关重要。而在这些风险指标计算中,违约概率的计算又成为了其中最基础、最关键的问题。事实上,在整个内部评级法以及全面风险管理的应用中,客户违约概率的准确计量都是最核心的问题,它是预期损失、经济资本、贷款风险收益率计算的基础。本文在新资本协议框架下,着重探讨了违约概率模型的建立、运算和检验等关键步骤,提出了中国银行业的应对策略。一、违约概率的标准定义违约概率是指借款人未来一定时期内不能按合同要求偿还贷款本息或履行相关义务的可能性。在新资本协议中,违约概率被具体定义为借款人一年内的累计违约概率与3个基本点中的高者。巴塞尔委员会
5、设定0.03%的下限既是为了给风险权重设定下限,同时也是考虑到银行在检验小概率时所面临的困难。2002年,巴塞尔委员会对内部评级法实施过程中的许多关键指标进行了重新定义,其中客户违约定义是在广泛征求各国银行意见的基础上制定的,具体内容表述为。当下列一项或多项事件发生时,相关的债务人即被视作违约。(1)能判定债务人不可能偿还全部债务(本金、利息或其它费用);(2)与债务人的任何债务有关的信贷损失事件,如销帐、提取特别准备金或债务重组,包括豁免或推迟偿还本金、利息或其它费用;(3)债务人的任何债务逾期90天以上;或(4)债务人申请破产或要求债权人提供类似的保护。上述标准只是一个参考定义,由于我国没
6、有发布具体企业违约或破产的统计信息,没有明确的划分企业违约的标准可供参考,为了选取样本和建立判别模型,还必须制定一个切实可行的违约与非违约企业的界定标准。企业违约集中和突出表现为企业财务违约,以违约、无偿付能力或破产为显著特征和具体表现形式,是违约程度逐步加深的三种具体表现形式,也是企业违约逐步加剧的三部曲。从企业财务违约表现入手,抓住三个财务违约的显著特征,就可以对企业是否违约进行准确划分。违约、无偿付能力或破产在实务中都表现为企业无法按贷款合同约定偿还银行本金和利息。因此,我们把年底企业能否按时偿还银行贷款本息作为企业违约与否的界定标准。 二、计算违约概率的数学工具从统计学角度看,可以进行
7、违约概率分析的数学工具主要包括判别分析、逻辑回归、主成分分析和神经网络等四种类型。(1)判别分析判别分析是一种度量特定范畴内因子重要程度的分类方法。如检验引起客户违约的主要因素,只要能确定所有可能的影响因素,模型就可以使用这些因素在违约主要因素和次要因素之间做出判别分析。在错判概率最小或错判损失最小的前提下,建立一个计算准则,对给定样本,依据该准则判断是否违约。对客户违约概率的计算属于多元判别分析。具体而言,将已有的客户违约数据对应相应客户信用分类的样本进行分类,对各组样本选择相应的自变量进行统计分析,求出合并协方差矩阵。再利用新样本数据中相应的变量代入公式求得马氏距离,距离最小的表示新样本数
8、据与该类样本最为相似,由此归入此类(违约或不违约),并根据距离远近求出新客户一年期违约概率。目前,国际通行的统计工具软件,如SAS、SPSS、Statistcs等都能够提供判别分析功能,可以根据用户需要定制前端更加友好的界面,从而更直接地进行违约概率的计算和判别。(2)Logistic逻辑回归此类模型是计算违约概率的传统工具,其基本原理是对已有客户违约和不违约样本0-1分类,根据业务规则,选取一定指标作为解释变量。取得这些已有先验数据的样本后,将P设为客户违约概率,(1-P)为客户不违约的概率,将比率P/(1-P)取自然对数得Ln(P/(1-P),即对P作LOGIT转换,由此建立线形回归方程进
9、行分析。实践表明,这种模型对判断二分类变量的关系有着良好效果。而违约事件正好属于二分变量范畴,因此这种模型在计算PD过程中有着很好的适用性。(3)主成分分析主成分分析是“空间旋转”构造原变量的线形组合,产生一系列互不相关的新变量,从中选出少数主要变量,使之包含尽可能多的原变量信息,从而使得用这几个新变量代替原变量分析问题和解决问题成为可能。当研究对象确定后,变量中所含信息的大小通常用该变量的样本方差来度量。在现实经济生活中,影响违约的因素很多,如企业经营状况、财务状况、还款意愿、担保品价值、政府干预等,这些因素对违约的发生有着不同的贡献,对违约概率的分析没有必要考虑所有影响因素,运用主成分分析
10、可以从变量的相互影响关系中萃取出主要因素,并根据各要素所含信息的多少确定变量关系和计算方法。统计实验表明,该方法在计算PD时,如单独使用,往往造成模型不健壮,即参数缺乏稳定性,但它可以十分有效地确定解释变量集合,因此在模型建立的前期发挥着重要作用,若与其他模型结合,会收到良好效果。(4)神经网络分析神经网络模型是近年发展起来的一种信用分析模型。它与非线形判别分析十分相似,扬弃了危机预测函数的变量是线形并且相互独立的假设。神经网络模型能深入挖掘预测变量之间“隐藏”关系,正在成为非线性违约预测函数的重要根据。在人脑中,穿梭于神经元间的电子信号是受到抑制还是得到激活,取决于神经元网络过去学习的内容。
11、同样,采用硬件或是软件构建的人工神经元与生物神经元的行为方式基本相似。神经网络的行为来源于相互联系的单元的集合性行为。神经元之间的关联并不是固定不变的,而是可以通过神经网络与外界间的相互作用所产生的学习过程进行相应的修改。三、违约概率模型的比较研究(1)古典违约分析银行最初的信用违约概率分析更像一个专家系统,这种分析过程多是依赖于训练有素的专家的主观判断的定性分析系统,一个信贷人员在其职业生涯中,积累了这种信用分析经验,进而成为专家。在信用分析模型不甚发达的时代,这些信贷专家的经验判断对银行来说是弥足珍贵的,他们对贷款的审核过程很有借鉴意义。其评估过程大致如下:基于以前客户贷款违约情况资料的分
12、析,将客户的违约情况大致分为几种情况,如很低、低、中、高、很高五个数量级,然后对新贷款客户进行全方位的判断。尽管这种判断方式无法给出具体的违约概率值,但这种客户违约判断方式在银行发展早期还是相当有效的,也在一定程度上控制了信用风险,特别像财务比率的分析思想,直到现在都是违约概率模型不可或缺的组成成分。然而,古典违约分析过多依赖信贷专家的主观判断,在实际应用中精确度和一致性很难保证。(2)奥特曼模型Altman教授创立的Z模型是建立在单指标比率水平及绝对水平基础之上的多变量模型。这些数值经过综合计算产生的衡量标准能有效地区分违约与非违约客户。这种标准之所以有效是因为通过对已有的违约客户和非违约客
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 资本 协议 违约 概率 模型 研究 应用
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内