北师大版数学知识点总结.docx
《北师大版数学知识点总结.docx》由会员分享,可在线阅读,更多相关《北师大版数学知识点总结.docx(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版数学(八年级上册)知识点总结第一章 勾股定理1、勾股定理(1)直角三角形两直角边a,b的平方和等于斜边c的平方,即(2)勾股定理的验证:测量、数格子、拼图法、面积法,如青朱出入图、五巧板、玄图、总统证法(通过面积的不同表示方法得到验证,也叫等面积法或等积法)(3)勾股定理的适用范围:仅限于直角三角形2、勾股定理的逆定理如果三角形的三边长a,b,c有关系,那么这个三角形是直角三角形。3、勾股数:满足的三个正整数a,b,c,称为勾股数。 常见的勾股数有:(6,8,10)(3,4,5)(5,12,,13)(9,12,15)(7,24,25)(9,40,41) 规律:(1),短直角边为奇数,另
2、一条直角边及斜边是两个连续的自然数,两边之和是短直角边的平方。即当a为奇数且ab时,如果b+c=a2那么a,b,c就是一组勾股数.如(3,4,5)(5,12,,13)(7,24,25)(9,40,41)(2)大于2的任意偶数,2n(n1)都可构成一组勾股数分别是:2n,n2-1,n2+1 如:(6,8,10)(8,15,17)(10,24,26)4、常见题型应用: (1)已知任意两条边的长度,求第三边/斜边上的高线/周长/面积 (2)已知任意一条的边长以及另外两条边长之间的关系,求各边的长度/斜边上的高线/周长/面积 (3)判定三角形形状: a2 +b2c2锐角,a2 +b2=c2直角,a2
3、+b2c2钝角 判定直角三角形a.找最长边;b.比较长边的平方及另外两条较短边的平方和之间的大小关系;c.确定形状 (4)构建直角三角形解题例1. 已知直角三角形的两直角边之比为3:4,斜边为10。求直角三角形的两直角边。 解:设两直角边为3x,4x,由题意知: x=2,则3x=6,4x=8,故两直角边为6,8。中考突破 (1)中考典题 例. 如图(1)所示,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B及墙角C距离为1.5米,梯子滑动后停在DE位置上,如图(2)所示,测得得BD=0.5米,求梯子顶端A下落了多少米? 思维入门指导:梯子顶端A下落的距离为AE,即求AE的长。已知AB
4、和BC,根据勾股定理可求AC,只要求出EC即可。 解:在RtACB中,AC2=AB2-BC2=2.52-1.52=4, AC=2 BD=0.5,CD=2 EC=1.5 答:梯子顶端下滑了0.5米。点拨:要考虑梯子的长度不变。例5. 如图所示的一块地,AD=12m,CD=9m,ADC=90,AB=39m,BC=36m,求这块地的面积。 思维入门指导:求面积时一般要把不规则图形分割成规则图形,若连结BD,似乎不 解:连结AC,在RtADC中, 在ABC中,AB2=1521 答:这块地的面积是216平方米。 点拨:此题综合地应用了勾股定理和直角三角形判定条件。第二章 实数基本知识回顾1. 无理数的引
5、入。无理数的定义无限不循环小数。一、实数的概念及分类 1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数:无限不循环小数叫做无理数。在理解无理数时,要抓住“无限不循环”这一时之,归纳起来有四类:(1)开方开不尽的数,如等;(2)有特定意义的数,如圆周率,或化简后含有的数,如/3+8等;(3)有一定规律,但并不循环的数,如0.1010010001等;(4)某些三角函数值,如sin60o等二、实数的倒数、相反数和绝对值 1、相反数实数及它的相反数时一对数(只有符号不同的两个数叫做互为相反数,零的相反数是零),从数轴上看,
6、互为相反数的两个数所对应的点关于原点对称,如果a及b互为相反数,则有a+b=0,a=b,反之亦成立。2、绝对值在数轴上,一个数所对应的点及原点的距离,叫做该数的绝对值。(|a|0)。零的绝对值是它本身,也可看成它的相反数,若|a|=a,则a0;若|a|= -a,则a0。3、倒数如果a及b互为倒数,则有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想,理解实数及数轴的点是一一对应的,并能灵活运用。5、估算利用非负数解题的常见类型 例1. 解: 点拨:利用算术
7、平方根,绝对值非负性解题。三、平方根、算数平方根和立方根 1、算术平方根:一般地,如果一个正数x的平方等于a,即x2=a,那么这个正数x就叫做a的算术平方根。特别地,0的算术平方根是0。表示方法:记作“”,读作根号a。性质:正数和零的算术平方根都只有一个,零的算术平方根是零。2、平方根:一般地,如果一个数x的平方等于a,即x2=a,那么这个数x就叫做a的平方根(或二次方根)。表示方法:正数a的平方根记做“”,读作“正、负根号a”。性质:一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数a的平方根的运算,叫做开平方。 注意的双重非负性:被开方数及结果均为非负数
8、。即a0, 3、立方根一般地,如果一个数x的立方等于a,即x3=a那么这个数x就叫做a 的立方根(或三次方根)。表示方法:记作性质:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。四、实数大小的比较 1、实数比较大小:正数大于零,负数小于零,正数大于一切负数;数轴上的两个点所表示的数,右边的总比左边的大;两个负数,绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数,右边的数总比左边的数大。(2)求差比较:设a、b是实数,(3)求商比较法:设a、b是两正实数,(4)绝对值比较法:设a、b是两负实
9、数,则。(5)平方法:设a、b是两负实数,则。(6)倒数法:设a、b是同正,如果1/a1/b,则ab;同负,如果1/a1/b,则ab五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数a必须是非负数。2、性质:(1)(2)(3) ()(4) ()3、运算结果若含有“”形式,必须满足:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算 (1)六种运算:加、减、乘、除、乘方 、开方(2)实数的运算顺序先算乘方和开方,再算乘除,最后算加减,如果有括号,就先算括号里面的。(3)运算律加法交换律 加法结合律 乘法交换律 乘法结合律 乘法对加法的分
10、配律 例. 计算: 通过以上计算,观察规律,写出用n(n为正整数)表示上面规律的等式_。 解: 规律:第三章 图形的平移及旋转一、平移 1、定义:在平面内,将一个图形整体沿某方向移动一定的距离,这样的图形运动称为平移。2、要素(或条件):方向,即前后对应点的射线方向;距离,即对应点之间的距离3、性质:平移前后两个图形的形状和大小不变(即全等图形),对应点连线平行(或在同一条直线上)且相等,对应线段平行(或在同一条直线上)且相等,对应角相等。4、平移作图:线段的平移作法: 作法1:将线段两端点分别平移,然后将两个平移后的点连成线段,即为原线段平移后的线段; 作法2:将线段一端点平移,然后过平移
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 数学 知识点 总结
限制150内