简易数字电压表课程设计(共24页).doc
《简易数字电压表课程设计(共24页).doc》由会员分享,可在线阅读,更多相关《简易数字电压表课程设计(共24页).doc(23页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上电 子 测 量 结 课 作 业简 易 数 字 电 压 表 指导教师: 学 院: 专业班级: 姓 名: 学 号:专心-专注-专业摘 要 本文介绍了一种基于单片机的简易数字电压表的设计。该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换主要由芯片ADC0832来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块。数据处理则由芯片AT89C52来完成,其负责把ADC0832传送来的数字量经过一定的数据处理,产生相应的显示码送到显示模块进行显示;此外,它还控制着ADC0832芯片工作。该系统的数字电压表电路简单,所用的元件较少,成本低
2、,且测量精度和可靠性较高。此数字电压表可以测量0-5V的1路模拟直流输入电压值,并通过一个LCD1602液晶屏显示出来。 关键词: 单片机;数字电压表;A/D转换;AT89C52;ADC0832 目录1 数字电压表的简介1.1数字电压表简介在电量的测量中,电压、电流和频率是最基本的三个被测量,其中电压量的测量最为经常。而且随着电子技术的发展,更是经常需要测量高精度的电压,所以数字电压表就成为一种必不可少的测量仪器。数字电压表简称DVM,它是采用数字化测量技术,把连续的模拟量转换成不连续、离散的数字形式并加以显示的仪表。由于数字式仪器具有读数准确方便、精度高、误差小、测量速度快等特而得到广泛应用
3、。 传统的指针式刻度电压表功能单一,进度低,容易引起视差和视觉疲劳,因而不能满足数字化时代的需要。采用单片机的数字电压表,将连续的模拟量如直流电压转换成不连续的离散的数字形式并加以显示,从而精度高、抗干扰能力强,可扩展性强、集成方便,还可与PC实时通信。数字电压表是诸多数字化仪表的核心与基础。以数字电压表为核心,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表。目前,由各种单片机和A/D转换器构成的数字电压表作全面深入的了解是很有必要的。1.2数字电压表的的背景与意义电压表已经有100多年的发展历史,虽然不断改进与完善,仍然无法满足现代电子测量的需求,近二十年,微电子技术,计算
4、机技术,集成技术,网络技术等高新技术得到了迅猛发展。这一背景和形势,不断地向仪器仪表提出了更高、更新、更多的要求,如要求速度更快、灵敏度更高、稳定性更好、样品量更少、遥感遥测更远距、使用更方便、成本更低廉、无污染等。同时也为仪器仪表科技与产业的发展提供了强大的推动力,并成了仪器仪表进一步发展的物质、知识和技术基础。数字电压表(DigitalVoltmeter简称DVM)自1952年问世以来,显示出强大的生命力,现已成为在电子测量领域中应用最广泛的一种仪器。数字电压表可以显示清晰、直观,读数准确,准确度高,分辨力强,测量范围广,扩展能力强,测量速度快,输入阻抗高,集成度高,微功耗和抗干扰能力强等
5、优点,独占电压表产品的熬头。 DVM的高速发展,使它已成为实现测量自动化、提高工作效率不可缺少的仪表,数字化是当前计量仪器发展的主要方向之一,而高准度的DC-DVC的出现,又使DVM进入了精密标准测量领域。随着现代化技术的不断发展,数字电压表的功能和种类将越来越强,越来越多,其使用范围也会越来越广泛。采用智能化的数字仪器也将是必然的趋势,它们将不仅能提高测量准确度,而且能提高电测量技术的自动化程序,可以扩展成各种通用数字仪表、专用数字仪表及各种非电量的数字化仪表(如:温度计、湿度计、酸度计、重量、厚度仪等),几乎覆盖了电子电工测量、工业测量、自动化仪表等各个领域。从而提高计量检定人员的工作效。
6、 目前数字电压表的内部核心部件是A/D转换器,转换器的精度很大程度上影响着数字电压表的准确度,本毕业设计A/D转换器采用ADC0832对输人模拟信号进行转换,控制核心AT89C52再对转换的结果进行运算和处理,最后驱动输出装置显示数字电压信号。 2 设计总体方案 该设计主要由三个模块组成:A/D转换模块,数据处理模块及显示模块。A/D转换主要由芯片ADC0832来完成,它负责把采集到的模拟量转换为相应的数字量在传送到数据处理模块;数据处理则由芯片AT89C52来完成,其负责把ADC0832传送来的数字量经过一定的数据处理;产生相应的显示码送到显示模块进行显示。2.1 设计要求 1、以MCS-5
7、2系列单片机为核心器件,组成一个简单的直流数字电压表。2、采用1路模拟量输入,能够测量0-5V之间的直流电压值。3、电压显示采用LCD1602液晶屏显示,至少能够显示两位小数。 4、所用的元件较少,成本低,且测量精度和可靠性较高。2.2 设计思路 1、根据设计要求,选择AT89C52单片机为核心控制器件。2、A/D转换采用ADC0832实现,与单片机的接口P1的部分口连接。3、电压显示采用LCD1602液晶屏显示。4、LCD1602数据传输接口是单片机的P0口,单片机P0需要接上拉电阻。为方便移植,只需将LCD1602三个控制端口与P2口连接即可。2.3 设计方案本设计硬件电路设计由6个部分组
8、成:A/D转换电路,AT89C52单片机系统,LCD显示系统、时钟电路、复位电路以及测量电压输入电路。总体硬件电路框图如图2.1所示。 图2.1 系统硬件设计框图3 硬件电路设计3.1 A/D转换模块 现实世界的物理量都是模拟量,能把模拟量转化成数字量的器件称为模/数转换器(A/D转换器),A/D转换器是单片机数据采集系统的关键接口电路,按照各种A/D芯片的转化原理可分为逐次逼近型,双重积分型等等。双积分式A/D转换器具有抗干扰能力强、转换精度高、价格便宜等优点。与双积分相比,逐次逼近式A/D转换的转换速度更快,而且精度更高,比如ADC0809、ADC0808等,它们通常具有8路模拟选通开关及
9、地址译码、锁存电路等,它们可以与单片机系统连接,将数字量送到单片机进行分析和显示。一个n位的逐次逼近型A/D转换器只需要比较n次,转换时间只取决于位数和时钟周期,逐次逼近型A/D转换器转换速度快,因而在实际中广泛使用。(1) 逐次逼近型A/D转换器原理逐次逼近型A/D转换器是由一个比较器、A/D转换器、存储器及控制电路组成。它利用内部的寄存器从高位到低位一次开始逐位试探比较。转换过程如下:开始时,寄存器各位清零,转换时,先将最高位置1,把数据送入A/D转换器转换,转换结果与输入的模拟量比较,如果转换的模拟量比输入的模拟量小,则1保留,如果转换的模拟量比输入的模拟量大,则1不保留,然后从第二位依
10、次重复上述过程直至最低位,最后寄存器中的内容就是输入模拟量对应的二进制数字量。其原理框图如图3.1所示:图3.1 逐次逼近式A/D转换器原理图(2) ADC0832 主要特性ADC0832为8位分辨率A/D转换芯片,其最高分辨可达256级,可以适应一般的模拟量转换要求。其内部电源输入与参考电压的复用,使得芯片的模拟电压输入在05V之间。芯片转换时间仅为32S,据有双数据输出可作为数据校验,以减少数据误差,转换速度快且稳定性能强。独立的芯片使能输入,使多器件挂接和处理器控制变的更加方便。通过DI数据输入端,可以轻易的实现通道功能的选择。(3) ADC0832的外部引脚排列如图3.2所示。各引脚说
11、明如下:图3.2ADC0832的引脚图CS片选端,低电平有效。CH0,CH1两路模拟信号输入端。DI两路模拟输入选择输入端。DO模数转换结果串行输出端。CLK串行时钟输入端。Vcc/REF正电源端和基准电压输入端。GND电源地。(4) 单片机对ADC0832的控制原理 一般情况下ADC0832与单片机的接口应为4条数据线,分别是CS、CLK、DO、DI。但由于DO端与DI端在通信时并未同时有效并与单片机的接口是双向的,所以电路设计时可以将DO和DI并联在一根数据线上使用。当ADC0832未工作时其CS输入端应为高电平,此时芯片禁用,CLK和DO/DI的电平可任意。当要进行A/D转换时,须先将C
12、S端置于低电平并且保持低电平直到转换完全结束。此时芯片开始转换工作,同时由处理器向芯片时钟输入端CLK提供时钟脉冲,DO/DI端则使用DI端输入通道功能选择的数据信号。在第1个时钟脉冲到来之前DI端必须是高电平,表示启动位。在第2、3个时钟脉冲到来之前DI端应输入2位数据用于选择通道功能,其功能项见表3.1所示。表3.1 功能表 如表3-1所示,当配置位2位数据为1、0时,只对CH0进行单通道转换。当配置2位数据为1、1时,只对CH1进行单通道转换。当配置2位数据为0、0时,将CH0作为正输入端IN+,CH1作为负输入端IN-进行输入。当配置2位数据为0、1时,将CH0作为负输入端IN-,CH
13、1作为正输入端IN+进行输入。到第3个时钟脉冲到来之后DI端的输入电平就失去输入作用,此后DO/DI端则开始利用数据输出DO进行转换数据的读取。从第4个时钟脉冲开始由DO端输出转换数据最高位D7,随后每一个脉冲DO端输出下一位数据。直到第11个脉冲时发出最低位数据D0,一个字节的数据输出完成。也正是从此位开始输出下一个相反字节的数据,即从第11个时钟脉冲输出D0。随后输出8位数据,到第19个脉冲时数据输出完成,也标志着一次A/D转换的结束。最后将CS置高电平禁用芯片,直接将转换后的数据进行处理就可以了,图3.3为ADC0832时序图。图3.3 ADC0832时序图3.2 单片机系统(1) AT
14、89C52性能AT89C52是美国ATMEL公司生产的低电压,高性能CMOS8位单片机,片内含有4KB的可反复擦写的只读程序存储器和128字节的随机存储器。该器件采用ATMEL高密度非易失存储器制造技术制造,与工业标准的MCS-51指令集和输出管脚相兼容,由于将多功能8位CPU和闪烁存储器组合在单个芯片中,ATMEL的AT89C52是一种高效微控制器,它为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。 AT89C52功能性能:与MCS-51成品指令系统完全兼容;4KB可编程闪速存储器;寿命:1000次写/擦循环;数据保留时间:10年;全静态工作:0-24MHz;三级程序存储器锁定;128*
15、8B内部RAM;32个可编程I/O口线;2个16位定时/计数器;5个中断源;可编程串行UART通道;片内震荡器和掉电模式。 (2) AT89C52各引脚功能AT89C52提供以下标准功能:4KB的Flash闪速存储器,128B内部RAM,32个I/O口线,两个16位定时/计数器,一个5向量两级中断结构,一个全双工串行通信口,片内震荡器及时钟电路,同时,AT89C52可降至0Hz静态逻辑操作,并支持两种软件可选的节电工作模式。空闲方式停止CPU的工作,但允许RAM,定时/计数器,串行通信口及中断系统继续工作,掉电方式保存RAM中的内容,但震荡器停止工作并禁止其他所有工作直到下一个硬件复位。AT8
16、9C52采用PDIP封装形式,引脚配置如图3.4所示。图3.4 AT89C52的引脚图AT89C52芯片的各引脚功能为:P0口:这组引脚共有8条,P0.0为最低位。这8个引脚有两种不同的功能,分别适用于不同的情况,第一种情况是89C52不带外存储器,P0口可以为通用I/O口使用,P0.0-P0.7用于传送CPU的输入/输出数据,这时输出数据可以得到锁存,不需要外接专用锁存器,输入数据可以得到缓冲,增加了数据输入的可靠性;第二种情况是89C52带片外存储器,P0.0-P0.7在CPU访问片外存储器时先传送片外存储器的低8位地址,然后传送CPU对片外存储器的读/写数据。P0口为开漏输出,在作为通用
17、I/O使用时,需要在外部用电阻上拉。P1口:这8个引脚和P0口的8个引脚类似,P1.7为最高位,P1.0为最低位,当P1口作为通用I/O口使用时,P1.0-P1.7的功能和P0口的第一功能相同,也用于传送用户的输入和输出数据。P2口:这组引脚的第一功能与上述两组引脚的第一功能相同即它可以作为通用I/O口使用,它的第一功能和P0口引脚的第二功能相配合,用于输出片外存储器的高8位地址,共同选中片外存储器单元,但并不是像P0口那样传送存储器的读/写数据。P3口:这组引脚的第一功能和其余三个端口的第一功能相同,第二功能为控制功能,每个引脚并不完全相同,如下表3.2所示:表3.2 P3口各位的第二功能P
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 简易 数字 电压表 课程设计 24
限制150内