角平分线、垂直平分线(共5页).doc
《角平分线、垂直平分线(共5页).doc》由会员分享,可在线阅读,更多相关《角平分线、垂直平分线(共5页).doc(5页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上5.角平分线、垂直平分线知识考点:了解角平分线、垂直平分线的有关性质和定理,并能解决一些实际问题。精典例题:【例题】如图,已知在ABC中,ABAC,B300,AB的垂直平分线EF交AB于点E,交BC于点F,求证:CF2BF。分析一:要证明CF2BF,由于BF与CF没有直接联系,联想题设中EF是中垂线,根据其性质可连结AF,则BFAF。问题转化为证CF2AF,又BC300,这就等价于要证CAF900,则根据含300角的直角三角形的性质可得CF2AF2BF。分析二:要证明CF2BF,联想B300,EF是AB的中垂线,可过点A作AGEF交FC于G后,得到含300角的RtAB
2、G,且EF是RtABG的中位线,因此BG2BF2AG,再设法证明AGGC,即有BFFGGC。 分析三:由等腰三角形联想到“三线合一”的性质,作ADBC于D,则BDCD,考虑到B300,不妨设EF1,再用勾股定理计算便可得证。以上三种分析的证明略。 探索与创新:【问题】请阅读下面材料,并回答所提出的问题:三角形内角平分线性质定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例。如图,ABC中,AD是角平分线。求证:。分析:要证,一般只要证BD、DC与AB、AC或BD、AB与DC、AC所在三角形相似,现在B、D、C在同一条直线上,ABD与ADC不相似,需要考虑用别的方法换比。我们注
3、意到在比例式中,AC恰好是BD、DC、AB的第四比例项,所以考虑过C作CEAD交BA的延长线于E,从而得到BD、CD、AB的第四比例项AE,这样,证明就可以转化为证AEAC。证明:过C作CEAD交BA的延长线于E CEADE3AEAC CEAD (1)上述证明过程中,用了哪些定理(写出两个定理即可);(2)在上述分析、证明过程中,主要用到了三种数学思想的哪一种?选出一个填入后面的括号内( )数形结合思想 转化思想 分类讨论思想答案:转化思想(3)用三角形内角平分线性质定理解答问题:已知AD是ABC中BAC的角平分线,AB5 cm,AC4 cm,BC7 cm,求BD的长。答案:cm评注:本题的目
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 平分线 垂直平分线
限制150内