2019届云南师大附中高三高考适应性月考数学(理)试题Word版含解析.docx
《2019届云南师大附中高三高考适应性月考数学(理)试题Word版含解析.docx》由会员分享,可在线阅读,更多相关《2019届云南师大附中高三高考适应性月考数学(理)试题Word版含解析.docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2019届云南师大附中高三高考适应性月考数学(理)试题第卷(共60分)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设集合A0,1,2,4,B,则( ) A.1,2, 3,4B. 2,3,4 C. 2,4D. 【答案】C【解析】试题分析:,故选C.考点:集合的交集运算.2.若复数的共轭复数是,其中i为虚数单位,则点(a,b)为( ) A.(一1. 2)B.(2,1) C.(1,2)D.(2,一1)【答案】B【解析】试题分析:,故选B.考点:复数的计算.3.已知函数,若1,则实数a的值为( ) A、2B、1C. 1 D、一1【答案】
2、C【解析】试题分析:,故选C考点:函数值.4.“0ml”是“函数有零点”的( ) A.充分不必要条件B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件【答案】A【解析】试题分析:,由,得,且,所以函数有零点反之,函数有零点,只需 ,故选A.考点:充分必要条件.5.将某正方体工件进行切削,把它加工成一个体积尽可能大的新工件,新工件的三视图如图1所示,则原工件材料的利用率为材料的利用率( ) A、 B、 C、 D、 【答案】C【解析】试题分析:如图1,不妨设正方体的棱长为1,则切削部分为三棱锥,其体积为,又正方体的体积为1,则剩余部分(新工件)的体积为,故选C.考点:三视图.6.在ABC
3、中,AB =2, AC1,E, F为BC的三等分点,则( ) A、 B、 C、 D、【答案】B【解析】试题分析:由,知,以所在直线分别为x轴、y轴建立平面直角坐标系,则,于是,据此,故选B考点:向量的运算.7.已知,则( ) A、 B、 C、 D、【答案】B【解析】试题分析:由,故选B考点:诱导公式.8.设实数x,y满足则的取值范围是( ) A、B、C、D、【答案】D【解析】试题分析:由于表示可行域内的点与原点的连线的斜率,如图2,求出可行域的顶点坐标,则,可见,结合双勾函数的图象,得,故选D考点:线性规划.9.定义mina,b= ,在区域任意取一点P(x, y),则x,y满足minx+y+4
4、,x2+x+2y= x2+x+2y的概率为( ) A、 B、 C、D、【答案】A考点:几何概型.10.九章算术中,将四个面都为直角三角形的四面体称之为鳖臑,如图2,在鳖臑PABC中,PA 平面ABC,ABBC,且AP=AC=1,过A点分别作AE 1 PB于E、AFPC于F,连接EF当AEF的面积最大时,tanBPC的值是( ) A B C D【答案】B【解析】试题分析:显然,则,又,则,于是,结合条件得,所以、均为直角三角形,由已知得,而,当且仅当时,取“=”,所以,当时,的面积最大,此时,故选B.考点:基本不等式、三角形面积.11.设定义在(0,)上的函数f(x), 其导数函数为,若恒成立,
5、则( )A B C D【答案】D【解析】试题分析:因为定义域为,所以,因为,所以在上单调递增,所以,即,故选D.考点:利用导数判断函数的单调性比较大小.12.设直线与抛物线x2=4y相交于A, B两点,与圆C: (r0)相切于点M,且M为线段AB的中点,若这样的直线恰有4条,则r的取值范围是( )A.(1,3) B. (1, 4)C. (2, 3) D. (2, 4)【答案】D【解析】试题分析:圆C在抛物线内部,当轴时,必有两条直线满足条件,当l不垂直于y轴时,设,则,由 ,因为圆心,所以,由直线l与圆C相切,得,又因为,所以,且,又 ,故,此时,又有两条直线满足条件,故选D考点:直线与抛物线
6、的位置关系、直线与圆的位置关系.第卷(共90分)二、填空题(每题5分,满分20分,将答案填在答题纸上)13.如图3.这是一个把k进掉数a(共有n位)化为十进制数b的程序框图,执行该程序框图,若输人的k,a,n分别为2,110011,6,则抢出的b 【答案】51【解析】试题分析:依程序框图得.考点:程序框图.14.若函数在上存在单调递增区间,则a的取值范围是 .【答案】【解析】试题分析:当时,的最大值为,令,解得,所以a的取值范围是.考点:利用导数判断函数的单调性.15.设椭圆E:的右顶点为A、右焦点为F,B为椭圆E在第二象限上的点,直线BO交椭圆E于点C,若直线BF平分线段AC,则椭圆E的离心
7、率是【答案】【解析】试题分析:如图3,设AC中点为M,连接OM,则OM为的中位线,于是,且,即考点:椭圆的离心率.16.设则不大于S的最大整数S等于【答案】2014【解析】试题分析:,所以,故考点:裂项相消法求和.三、解答题 (本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本小题满分12分)已知数列an的首项al1,(I)证明:数列是等比数列;(II)设,求数列的前n项和.【答案】(1)证明详见解析;(2).【解析】试题分析:本题主要考查等比数列的证明、等比数列的通项公式、错位相减法、等比数列的前n项和等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算
8、能力.第一问,先将已知表达式取倒数,再分离常数、用配凑法证明数列是等比数列;第二问,结合第一问的结论,利用等比数列的通项公式,先计算出,再计算,用错位相减法求和,在化简过程中用等比数列的前n项和计算即可.试题解析:()证明:,又,所以数列是以为首项,为公比的等比数列 (6分)()解:由()知,即,设,则,由得,又,数列的前n项和(12分)考点:等比数列的证明、等比数列的通项公式、错位相减法、等比数列的前n项和.18.(本小题满分12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历,假定该毕业生得到甲公司面试的概率为,得到乙公司和丙公司面试的概率均为p,且三个公司是否让其面试是
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2019 云南 师大附中 三高 适应性 月考 数学 试题 Word 解析
限制150内