高中数学解题基本方法(已整理)(共26页).doc
《高中数学解题基本方法(已整理)(共26页).doc》由会员分享,可在线阅读,更多相关《高中数学解题基本方法(已整理)(共26页).doc(31页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考试题主要从以下几个方面对数学思想方法进行考查: 常用数学方法:配方法、换元法、待定系数法、数学归纳法、参数法、消去法等; 数学逻辑方法:分析法、综合法、反证法、归纳法、演绎法等; 数学思维方法:观察与分析、概括与抽象、分析与综合、特殊与一般、类比、归纳和演绎等; 常用数学思想:函数与方程思想、数形结合思想、分类讨论思想、转化(化归)思想等。第一章 高中数学解题基本方法一、 配方法配方法是对数学式子进行一种定向变形(配成“完全平方”)的技巧,通过配方找到已知和未知的联系,从而化繁为简。何时配方,需要我们适当预测,并且合理运用“裂项”与“添项”、“配”与“凑”的技巧,
2、从而完成配方。有时也将其称为“凑配法”。最常见的配方是进行恒等变形,使数学式子出现完全平方。它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺xy项的二次曲线的平移变换等问题。配方法使用的最基本的配方依据是二项完全平方公式(ab)2a22abb2,将这个公式灵活运用,可得到各种基本配方形式,如:ab(ab)2ab(ab)2ab;aabb(ab)ab(ab)3ab(a)(b);abcabbcca(ab)(bc)(ca)abc(abc)2(abbcca)(abc)2(abbcca)结合其它数学知识和性质,相应有另外的一些配方形式,如:1sin212sin
3、cos(sincos);x(x)2(x)2 ; 等等。、再现性题组:1. 在正项等比数列a中,asa+2asa+aa=25,则 aa_。2. 方程xy4kx2y5k0表示圆的充要条件是_。 A. k1 B. k1 C. kR D. k或k13. 已知sincos1,则sincos的值为_。 A. 1 B. 1 C. 1或1 D. 04. 函数ylog (2x5x3)的单调递增区间是_。 A. (, B. ,+) C. (, D. ,3)5. 已知方程x+(a-2)x+a-1=0的两根x、x,则点P(x,x)在圆x+y=4上,则实数a_。【简解】 1小题:利用等比数列性质aaa,将已知等式左边后
4、配方(aa)易求。答案是:5。 2小题:配方成圆的标准方程形式(xa)(yb)r,解r0即可,选B。 3小题:已知等式经配方成(sincos)2sincos1,求出sincos,然后求出所求式的平方值,再开方求解。选C。4小题:配方后得到对称轴,结合定义域和对数函数及复合函数的单调性求解。选D。5小题:答案3。、示范性题组:例1. 已知长方体的全面积为11,其12条棱的长度之和为24,则这个长方体的一条对角线长为_。 A. 2 B. C. 5 D. 6【分析】 先转换为数学表达式:设长方体长宽高分别为x,y,z,则 ,而欲求对角线长,将其配凑成两已知式的组合形式可得。【解】设长方体长宽高分别为
5、x,y,z,由已知“长方体的全面积为11,其12条棱的长度之和为24”而得:。长方体所求对角线长为:5。所以选B。【注】本题解答关键是在于将两个已知和一个未知转换为三个数学表示式,观察和分析三个数学式,容易发现使用配方法将三个数学式进行联系,即联系了已知和未知,从而求解。这也是我们使用配方法的一种解题模式。例2. 设方程xkx2=0的两实根为p、q,若()+()7成立,求实数k的取值范围。【解】方程xkx2=0的两实根为p、q,由韦达定理得:pqk,pq2 ,()+()7, 解得k或k 。又 p、q为方程xkx2=0的两实根, k80即k2或k2综合起来,k的取值范围是:k 或者 k。【注】
6、关于实系数一元二次方程问题,总是先考虑根的判别式“”;已知方程有两根时,可以恰当运用韦达定理。本题由韦达定理得到pq、pq后,观察已知不等式,从其结构特征联想到先通分后配方,表示成pq与pq的组合式。假如本题不对“”讨论,结果将出错,即使有些题目可能结果相同,去掉对“”的讨论,但解答是不严密、不完整的,这一点我们要尤为注意和重视。例3. 设非零复数a、b满足aabb=0,求()() 。【分析】 对已知式可以联想:变形为()()10,则 (为1的立方虚根);或配方为(ab)ab 。则代入所求式即得。【解】由aabb=0变形得:()()10 ,设,则10,可知为1的立方虚根,所以:,1。又由aab
7、b=0变形得:(ab)ab ,所以 ()()()()()()2 。【注】 本题通过配方,简化了所求的表达式;巧用1的立方虚根,活用的性质,计算表达式中的高次幂。一系列的变换过程,有较大的灵活性,要求我们善于联想和展开。【另解】由aabb0变形得:()()10 ,解出后,化成三角形式,代入所求表达式的变形式()()后,完成后面的运算。此方法用于只是未联想到时进行解题。假如本题没有想到以上一系列变换过程时,还可由aabb0解出:ab,直接代入所求表达式,进行分式化简后,化成复数的三角形式,利用棣莫佛定理完成最后的计算。、巩固性题组:1.函数y(xa)(xb) (a、b为常数)的最小值为_。A. 8
8、 B. C. D.最小值不存在2.、是方程x2axa60的两实根,则(-1) +(-1)的最小值是_。A. B. 8 C. 18 D.不存在3.已知x、yR,且满足x3y10,则函数t28有_。A.最大值2 B.最大值 C.最小值2 B.最小值4.椭圆x2ax3ya60的一个焦点在直线xy40上,则a_。A. 2 B. 6 C. 2或6 D. 2或65.化简:2的结果是_。A. 2sin4 B. 2sin44cos4 C. 2sin4 D. 4cos42sin4 6.设F和F为双曲线y1的两个焦点,点P在双曲线上且满足FPF90,则FPF的面积是_。7.若x1,则f(x)x2x的最小值为_。8
9、.已知,cos(-),sin(+),求sin2的值。(92年高考题)9.设二次函数f(x)AxBxC,给定m、n(m0; 是否存在一个实数t,使当t(m+t,n-t)时,f(x)1,t1,mR,xlogtlogs,ylogtlogsm(logtlogs), 将y表示为x的函数yf(x),并求出f(x)的定义域; 若关于x的方程f(x)0有且仅有一个实根,求m的取值范围。二、换元法解数学题时,把某个式子看成一个整体,用一个变量去代替它,从而使问题得到简化,这叫换元法。换元的实质是转化,关键是构造元和设元,理论依据是等量代换,目的是变换研究对象,将问题移至新对象的知识背景中去研究,从而使非标准型问
10、题标准化、复杂问题简单化,变得容易处理。换元法又称辅助元素法、变量代换法。通过引进新的变量,可以把分散的条件联系起来,隐含的条件显露出来,或者把条件与结论联系起来。或者变为熟悉的形式,把复杂的计算和推证简化。它可以化高次为低次、化分式为整式、化无理式为有理式、化超越式为代数式,在研究方程、不等式、函数、数列、三角等问题中有广泛的应用。换元的方法有:局部换元、三角换元、均值换元等。局部换元又称整体换元,是在已知或者未知中,某个代数式几次出现,而用一个字母来代替它从而简化问题,当然有时候要通过变形才能发现。例如解不等式:4220,先变形为设2t(t0),而变为熟悉的一元二次不等式求解和指数方程的问
11、题。三角换元,应用于去根号,或者变换为三角形式易求时,主要利用已知代数式中与三角知识中有某点联系进行换元。如求函数y的值域时,易发现x0,1,设xsin ,0,,问题变成了熟悉的求三角函数值域。为什么会想到如此设,其中主要应该是发现值域的联系,又有去根号的需要。如变量x、y适合条件x2y2r2(r0)时,则可作三角代换xrcos、yrsin化为三角问题。均值换元,如遇到xyS形式时,设xt,yt等等。我们使用换元法时,要遵循有利于运算、有利于标准化的原则,换元后要注重新变量范围的选取,一定要使新变量范围对应于原变量的取值范围,不能缩小也不能扩大。如上几例中的t0和0,。、再现性题组:1.ysi
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高中数学 解题 基本 方法 整理 26
限制150内