北师大版2018年高中数学选修2-2同步优化指导练习含答案.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《北师大版2018年高中数学选修2-2同步优化指导练习含答案.pdf》由会员分享,可在线阅读,更多相关《北师大版2018年高中数学选修2-2同步优化指导练习含答案.pdf(172页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、北师大版2018年高中数学选修2-2同步优化指导全册课时练习含答案目 录第 1章 1.1、1.2归纳与类比第 1章 1.1、1.2归纳与类比活页作业1第 1章 2.1、2.2综合法与分析法第 1章 2.1、2.2 综合法与分析法 活页作业2第 1章 3 反证法第 1章 3 反证法活页作业3第 1章 4 数学归纳法第 1章 4 数学归纳法活页作业4阶段质量评估1第 2 章 1 变化的快慢与变化率第 2 章 1 变化的快慢与变化率活页作业5第 2 章 2.1、2.2 导数的概念及其几何意义第 2 章 2.1、2.2 导数的概念及其几何意义活页作业6第 2 章 3 计算导数第 2 章 3 计算导数活
2、页作业7第 2 章 4.1、4.2 导数的四则运算法则第 2 章 4.1、4.2 导数的四则运算法则活页作业8第 2 章 5 简单复合函数的求导法则第 2 章 5 简单复合函数的求导法则活页作业9阶段质量评估2第 3 章 1.1导数与函数的单调性第 3 章 1.1导数与函数的单调性第 3 章 1.1导数与函数的单调性第 3 章 1.1导数与函数的单调性(第一课时)(第一课时)活页作业10(第二课时)(第二课时)活页作业11第 3 章 1.2导数在实际问题中的应用第 3 章 1.2导数在实际问题中的应用活页作业12第 3 章 2.1 实际问题中导数的意义A 第 3 章 2.1 实际问题中导数的意
3、义活页作业13A 第 3 章 2.2 最大值、最小值问题A 第 3 章 2.2 最大值、最小值问题 活页作业14 阶段质量评估3A 第 4 章 1.1、1.2定积分的概念A 第 4 章 1.1、1.2定积分的概念 活页作业15第 4 章 2 微积分基本定理A 第 4 章 2 微积分基本定理活页作业16A 第 4 章 3.1、3.2定积分的简单应用 第 4 章 3.1、3.2定积分的简单应用活页作业17 阶段质量评估4A 第 5 章 1.1、1.2数系的扩充与复数的引入A 第 5 章 1.1、1.2数系的扩充与复数的引入活页作业18A 第 5 章 2.1、2.2 复数的四则运算A 第 5 章 2
4、.1、2.2 复数的四则运算 活页作业19 阶段质量评估5 模块综合测评II北师大版2018年高中数学选修2-2同步优化指导练习含答案第 一 章 11.11.2反馈-当堂达标实 战 演 练,沙 场 点 兵1 .把1,3,6,1 0,1 5,2 1,这些数叫作三角形数,这是因为这些数目的点可以排成正三角形(如图所示),则第七个三角形数是()A.2 7C.2 9解析:第一个三角形数是1,第二个三角形数是1+2=3,第三个三角形数是1+2+3=6,第四个三角形数是1+2+3+4=1 0.(1+因此,由归纳推理第n个三南形数是1+2+3+4+=2 由此可以得出第七个三角形数是2 8.答案:B2.如图所
5、示,椭圆中心在坐标原点,尸为左焦点,当旗时,其 离 心 率 为 肉L此类椭圆被称为“黄金椭圆”,类 比“黄金椭圆”,可推算出“黄金双曲线”的离心率e等于()C.3一 1D.4+1解 析:根 据“黄 金 椭 圆”的 性 质 无JL热,可 以 得 到“黄金双曲线”也满足这个性质,设“黄金双曲1北师大版2018年高中数学选修2-2同步优化指导练习含答案2 2线”的方程为a一方=1,则 8(0,b),F(-c,0),A(a,0).在“黄金双曲线中,:FB A B,:.FB A B=Q.又FB=(c,b),A B=(a,/?),而 必 二/一 等 号 两 边 同 除 以 下,得 e?e 1=0,求得e=
6、答案:A3.下列几种推理过程是类比推理的是()A.两直线平行,内错角相等B.由平面三角形性质,猜想空间四面体性质C.由数列的前几项,猜想数列的通项公式D.某校高二年级有1 0 个班,1 班 5 1 人,2 班 5 3 人,3 班 5 2 人,猜想各班都超过5 0 人解析:A不是合情推理,C是归纳推理,D是归纳推理,只有B是类比推理.答案:B4.设等差数列 斯 的前项和为S“,则%S8-54,Sl 2-S8,&6 S 1 2 成等差数列.类比以上结论有:设等比数列仍“的前项积为7;,则 兀,_,_,变 成等比数列.11 2解析:等差数列类比于等比数列时,其中和类比于积,减法类比于除法,可得类比结
7、论为:设等比数列 勾 的前八项积为7“,则朵 小,2 成等比数列.竺安 H 112口木T4 人5.已知数列 斯 中,做=6,an-+a,an+-an+”(1)求。1,的,。4;猜想数列 恁 的通项公式.解:(1)由 0 2=6,得.。2一,3 +2-1由 赤 彳 7=2,得的=1 5.a4+a3l 与由-工 7=3,4-。3十1得 4=2 8.故 =1,。3=1 5,4=2 8.由 t z1=l =l X(2 X l-l),2=6 =2 X(2 X 2-1),4 3=1 5 =3 X(2 X 3 1),4=4 X(2 X 4-1),,猜想 an=n(2nl).2北师大版2018年高中数学选修2
8、-2同步优化指导练习含答案活页作业(一)归纳与类比基 砒 巩 固1 .有两种花色的正六边形地面砖,按下图的规律,拼成若干个图案,则第六个图案中有阴影花色的正六边形的个数是()第一个图案 第二个图案 第三个图案A.2 6B.3 1C.3 2D.3 6解析:设第个图案有斯个阴影花色的正六边形,则 7 1=6 X 1 0,。2=6 义2 1,6=6X3-2,故猜想 6=6 X 6 5=3 1.答案:B2 .观察下列各式:1 =12,2+3+4=3 2,3+4+5+6+7=5 4+5+6+7+8+9+1 0=72,可 以 得 出 的 一 般 结 论 是()A.+(+1)+(+2)+(3-2)=/B.+
9、(+l)+(+2)T-F(3-2)=(2-I)?C.+(+1)+(+2)+(3 -1)=2D.+(+1)+(+2)+(3 及-1)=(2 一 1 尸解析:可以发现:第一个式子的第一个数是1,第二个式子的第一个数是2 故第个式子的第一个数是n;第一个式子中有1 个数相加,第二个式子中有3个数相加.故第n个式子中有2n个数相加;第一个式子的结果是1 的平方,第二个式子的结果是3的平方故第个式子应该是2 一1 的平方,故可以得到 +(+1)+(+2)+(3-2)=(2-I)2.答案:B3 .已知x0,由不等式工+=+卜+1 2 3 毛 言 j=3,我们可以得出推广结论:x+$2 +l(W N+),则
10、。等于()A.2n B.n2C.3n D.nn3北师大版2018年高中数学选修2-2同步优化指导练习含答案解析:再续写一个不等式:由此可得a=n.答案:D4 .已知扇形的弧长为/,半径为r,类比三角形的面积公式5=底 尹,可推知扇形面积公式S用等于)j,2A.y B.C.与D.不可类比解析:由扇形的弧长与半径分别类比三角形的底边与高,可得扇形的面积公式.答案:C5 .平面内平行于同一直线的两直线平行,由此类比我们可以得到()A.空间中平行于同一直线的两直线平行B.空间中平行于同一平面的两直线平行C.空间中平行于同一直线的两平面平行D.空间中平行于同一平面的两平面平行解析:利用类比推理,平面中的
11、直线和空间中的平面类比.答案:D6 .在平面上,若两个正三角形的边长的比为1 :2,则它们的面积比为1 :4.类似地,在空间中,若两个正四面体的棱长的比为1 :2,则 它 们 的 体 积 比 为.答案:1 :87 .已知等差数列 斯 的前项和是S“=幽抖,由此可类比得到各项均为正数的等比数列仍“的前n项 积T,=_ _ _ _ _ _ _ _(用 九,b,勿表示).解析:由等差数列中的“求和”类比等比数列中的“求积”,可知各项均为正数的等比数列 儿 的前nn项积(仇名)2 .n答案:S也)58 .上图中,上起第行,左起第+1列的数是.4北师大版2018年高中数学选修2-2同步优化指导练习含答案
12、17I18I19I20o_1_2_316-15-14-I25I4 _ 3169 一 8 1一 725-24-23-22-21解析:第 1 行第2 个数为2=1X 2,第2 行第3 个数为6=2X 3,第3 行第4 个数为12=3X4,第4 行第5 个数为20=4X5.故归纳出第n行第n+1 个数为n(n+l)=n2+n.答案:/+”2 29.在椭圆中,有一结论:过椭圆夕+5=1(4/?0)上不在顶点的任意一点P与长轴两端点A,A2,2连线,则直 线%I与%2斜率之积为一夕,类比该结论推理出双曲线的类似性质,并加以证明.V2 v2解:过双曲线,一方=1 上不在顶点的任意一点P 与实轴两端点A,4
13、 连线,则直线 以 与 雨2斜率,2之积为下.证明如下:设点 P(xo,y o),点 4 3,0),A2(a,0).椭圆中:狂N|MR4,=一 一-=x()a即十。劭 京/7,,2反倒一 1)j双曲线中:k P A i.kP A2=J T=x2_a2=7-a31 0.已 知 sin230+sin290+sin2150=2,$布25。+$也265。+$布2125。=2.观察上述两等式的规律,请你写出一个一般性的命题,并证明.解:一般性的命题为sii?0+sin2(60+6)+sin2(l 20+。)=*证明如下:sin20+sin2(60+0)+sin2(l 20+。)1 cos 2”一cos(
14、1200+2)J -cos(2400+2。)5北师大版2018年高中数学选修2-2同步优化指导练习含答案=|co s 20+co s(1 2 0+20)+co s(2 4 0 0+2 0=1 co s 2 0+co s 1 2 0 co s 2。s i n 1 2 0 s i n 2 +co s(1 8 0+6 0 +20)3 1 3=/g co s(6 0 0+20)co s(6 0+2。)=1.怩 力 提 升1 1.设 A B C的三边长分别为a,b,c,Z V I B C的面积为S,内切圆半径为r,则r=不 言p类比这个结论可知:四面体A-B C O的四个面的面积分别为&,SA S3,叉
15、,内切球半径为R,四面体A-8 C D的体 积 为 匕 则R等于()V2VA -R -S j +52+S3+S4,S1+S2+S 3+S 43 V 4 VC-D-S 1+S 2+S 3 +S 4 S 1+S 2 +S 3 +S 4解析:设四面体的内切球的球心为O,则球心0到四个面的距离都是R,所以四面体的体积等于以0为顶点,分别以四个面为底面的4个三棱锥体积的和.则四面体的体积为y 四 面 体 A-6 C D=q(S +S 2+S 3 +S Q R,R=_ _ _ _ _3 V _ _ _ _ _*S|+S2+S3+5 4,答案:C1 2.设 为正整数,%)=1+3+计算得欢=1,火4)2,共
16、8)|,尺6)3,观察上述结果,可推测一般的结论为.解析:由 题 意 心 得,/22)5,m3)|,;(24)1,故一般的结论为少 2答案:犬2)等Y1 3 .设函数式工)=百3a 0),观察:Y力 a)=y a)=x+2,X力(x)=A/i(x)=不 育X力(x)=/S(X)=7I+8,加 X)=A6(X)=7K,6北师大版2018年高中数学选修2-2同步优化指导练习含答案根据以上事实,由归纳推理可得:当6 N+且 2 2 时,力,(X)=/5LG)=.解析:依题意,先求函数结果的分母中x 项系数所组成数列的通项公式,由 1,3,7,1 5,,可推知该数列的通项公式为%=2-1.又函数结果的
17、分母中常数项依次为2,4,8,1 6,,故其通项公式为勿=2.所以当时,力(x)=/G-i(x)=(及二;八 衣;.答案:(2-x+21 4.(20 1 5 郑州模拟卷)平面几何里有“设直角三角形A 8 C 的两直角边分别为a,b,斜边上的高为小则点+表=表”,拓展到空间,研究三棱锥的侧棱长与底面上的高之间的关系可以得出的正确结论是:“设三棱锥4-8 8 的三个侧棱两两垂直,其长分别为a,b,c,面 B C 上的高为力,则”.解析:如右图所示,设 A 在底面的射影为。,连接8。并延长交C Q于 E.连接A E,由AB _ L AC,A BL AO 得 A8_ L 面 ACD.Cl rl tl,
18、AB _ L AE.设 AE=”在 AB E 中,由已知可得又易证CO _ L 面4 3 区:.CD A E,在4 C)中有*=/+1+*日答 案:5+表+/=表1 5.(2 0 6 江西模拟卷)设加)=2+十 4 1,“GN+,计算:式1),穴2),:3),-4),川 0)的值,同时作出归纳推理,并用=4 0 验证猜想是否正确.解::1)=1 2+1+4 1=4 3,/2)=22+2+4 1=4 7,负3)=3?+3+4 1 =5 3,y(4)=42+4+4 1=6 1,X5)=52+5+4 1=7 1,#6)=6 2+6 +4 1 =83,.7)=7 2+7 +4 1=97,X8)=82+
19、8+4 1 =1 1 3,犬9)=92+9+4 1 =1 3 1,y(1 0)=1 02+1 0+4 1 =1 5 1.;4 3,4 7,5 3,6 1,7 1,83,97,1 1 3,1 3 1,1 5 1 都为质数,归纳猜想:当“C N+时,犬)=2+4 1 的值都为质数.7北师大版2018年高中数学选修2-2同步优化指导练习含答案当 ”=40 时,440)=4()2+40+41=40X(40+1)+41=41X41,./40)是合数.由上面归纳推理得到的猜想不正确.16.如右图,点P为斜三棱柱ABC-A|B|G的侧棱BBi上一点,交 4 A 于 点M,P N L B B 1交CCi于点N
20、.(1)求证:C C J M N;(2)在任意O E F 中有余弦定理。笈=。尸+尸一拓展到空间,类比三角形的余弦定理,写出斜三棱柱的三个侧面面积与其中两个侧面所成的二面角之间的关系式,并予以证明.(1)证明:加,881,P N L B B、,.88|_L 平面 PMN.:.BBJMN.大,:CCBB,:.C”MN.解:在斜三棱柱A8C-AB|G中,有6 4 8 8 0 1 =S,BCGB 1+S2ACGA12SBCG3 SACGAcos a.其中a 为平面CGB|B与平面CG A A 所成的二面角.证明如下:;CGJ平面 PMN.:.上述二面角的平面角为A MNP.在PMN中,P M2=PN
21、2+M N2-2PN-MNcos 0 M N P M2CC=PN2CC+MNCC 一 2(PN-CCi)-(MN-CC)cos N MNP,:.SBCCB、=PN CC,SACCXA =M N CC,SABBiA尸PM-BBi=PM-CCi,:.有 S2ABB1A,=52BCCIB1+S2ACCIA1-2SBCC|B1SACC1A|COS a.第一章 2 2.1 2.2反馈-当堂达标实 成 演 练,沙场点兵1.分析法是从要证明的结论出发,逐步寻求使结论成立的()8北师大版2018年高中数学选修2-2同步优化指导练习含答案A.充分条件 B.必要条件C.充要条件 D.等价条件解析:分析法是从结论出
22、发执果索因,寻求使结论成立的充分条件.答案:A2.下面对命题“函数yu)=x+:是奇函数”的证明不是综合法的是()A.任意x C R,且 x 7 0,有人一x)=(一尤)+=一(x+,=y(x),所以贝x)是奇函数B.任意x C R,且 xW O,应x)=x+1+(x)+(一1)=0,即人工)=/(一幻.所以兀r)是奇函数_x_LC.任意x d R,且 x#0,因为/(x)W 0,所 以 喘?=-广=一 1,即式x)=-/U).所以穴力是奇函J(X)x+:数D.取 =一 1,-1)=一1+=2,又/(1)=1+1=2,式-1)=一 犬1),所以犬x)是奇函数解析:选项A,B,C 都是从奇函数的
23、定义出发,证明八-x)=-/(x)成立,从而得到犬x)是奇函数,而选项D 的证明方法为特殊值法,是错误的.答案:D3.用分析法证明cos%-sin%W l对任意角。成立时,最 后 明 显 成 立 的 条 件 是()A.cos%sin%=cos 20 B.sin20+cos20=1C.cos29Wl D.cos20sin20 1解析:分析法的证明过程如下:要证明 cos。一 sin%W 1,只需证明(cos20+sin%)(cos%sin 孙 W1,即证 cos%sin%b 0,则!解析:要证,+1 yci y ja-1 ya-2即证、+1 +yaya 1 +ya2.9北师大版2018年高中数学
24、选修2-2同步优化指导练习含答案答案:a+yciya+yja-2-11 3、十(a b)2 a+h 1 (ah)25.已知求证:而-yabh09 只需证(如+福)24。也就是证“第 1 yC.x=yB.x yD.不确定解析:取 a=l,Z?=4,得x=/,y=小,此 时x V y,猜想x V y.用分析法证明如下:x Vy,即yf a+yf b/;a+2ya b+b6 木+卜=2 a+b 2 y a b Qab,且 a,b W(0,+),而a#b,且 凡 人 G(0,+8)恰是已知条件.故 x 处 仿+仄打,则实数、匕满足的一个条件是1 1北师大版2018年高中数学选修2-2同步优化指导练习含
25、答案解析:若G、+短扬+队,则后0,不等式两边均大于或等于0.两边平方得:a3+b3+2alrah+h2a+2ahyah,即 a3+/73a2bb1 a0,a2(a-h)+h2(ba)0,(a/?2)0,(aZ)2(a+6)0,又a2 0,b 2 0,故 a+b 2 0,故 a,6 满足的条件为a2 0,6 2 0 且因而满足上式的任一个关于a,匕的条件均可.答案:a 0,b 2 0 且8.当xG(l,2)时,不等式/+尔+4 0 恒成立,则 小 的 取 值 范 围 是.解析:xG(1,2),.,.x2+/nx+40/n Q c,且 a+b+c=0,求证7序一ac0 B.a-c 0C.(ab)
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 北师大 2018 年高 数学 选修 同步 优化 指导 练习 答案
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内