2023年高中不等式的基本知识点和练习题含答案.docx
《2023年高中不等式的基本知识点和练习题含答案.docx》由会员分享,可在线阅读,更多相关《2023年高中不等式的基本知识点和练习题含答案.docx(10页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、不等式的基本知识(一)不等式与不等关系1、应用不等式(组)表达不等关系;不等式的重要性质:(1)对称性:(2)传递性:(3)加法法则:;(同向可加)(4)乘法法则:;(同向同正可乘)(5)倒数法则:(6)乘方法则:(7)开方法则:2、应用不等式的性质比较两个实数的大小:作差法(作差变形判断符号结论)3、应用不等式性质证明不等式(二)解不等式1、一元二次不等式的解法一元二次不等式的解集:设相应的一元二次方程的两根为,则不等式的解的各种情况如下表:2、简朴的一元高次不等式的解法:标根法:其环节是:(1)分解成若干个一次因式的积,并使每一个因式中最高次项的系数为正;(2)将每一个一次因式的根标在数轴
2、上,从最大根的右上方依次通过每一点画曲线;并注意奇穿偶不穿;(3)根据曲线显现的符号变化规律,写出不等式的解集。3、分式不等式的解法:分式不等式的一般解题思绪是先移项使右边为0,再通分并将分子分母分解因式,并使每一个因式中最高次项的系数为正,最后用标根法求解。解分式不等式时,一般不能去分母,但分母恒为正或恒为负时可去分母。4、不等式的恒成立问题:常应用函数方程思想和“分离变量法”转化为最值问题若不等式在区间上恒成立,则等价于在区间上若不等式在区间上恒成立,则等价于在区间上(三)线性规划1、用二元一次不等式(组)表达平面区域二元一次不等式Ax+By+C0在平面直角坐标系中表达直线Ax+By+C=
3、0某一侧所有点组成的平面区域.(虚线表达区域不涉及边界直线)2、二元一次不等式表达哪个平面区域的判断方法由于对在直线Ax+By+C=0同一侧的所有点(),把它的坐标()代入Ax+By+C,所得到实数的符号都相同,所以只需在此直线的某一侧取一特殊点(x0,y0),从Ax0+By0+C的正负即可判断Ax+By+C0表达直线哪一侧的平面区域.(特殊地,当C0时,常把原点作为此特殊点)3、线性规划的有关概念:线性约束条件:在上述问题中,不等式组是一组变量x、y的约束条件,这组约束条件都是关于x、y的一次不等式,故又称线性约束条件线性目的函数:关于x、y的一次式z=ax+by是欲达成最大值或最小值所涉及
4、的变量x、y的解析式,叫线性目的函数线性规划问题:一般地,求线性目的函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题可行解、可行域和最优解:满足线性约束条件的解(x,y)叫可行解由所有可行解组成的集合叫做可行域使目的函数取得最大或最小值的可行解叫线性规划问题的最优解4、求线性目的函数在线性约束条件下的最优解的环节:(1)寻找线性约束条件,列出线性目的函数;(2)由二元一次不等式表达的平面区域做出可行域;(3)依据线性目的函数作参照直线ax+by0,在可行域内平移参照直线求目的函数的最优解(四)基本不等式1若a,bR,则a2+b22ab,当且仅当a=b时取等号.2假如a,b是正数,
5、那么变形: 有:a+b;ab,当且仅当a=b时取等号.3假如a,bR+,ab=P(定值),当且仅当a=b时,a+b有最小值;假如a,bR+,且a+b=S(定值),当且仅当a=b时,ab有最大值.注:(1)当两个正数的积为定值时,可以求它们和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”(2)求最值的重要条件“一正,二定,三取等”4.常用不等式有:(1)(根据目的不等式左右的运算结构选用) ;(2)a、b、cR,(当且仅当时,取等号);(3)若,则(糖水的浓度问题)。不等式重要题型讲解(一) 不等式与不等关系题型二:比较大小(作差法、函数单调性、中间量
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年高 不等式 基本 知识点 练习题 答案
限制150内