2020-2021学年辽宁省沈阳市郊联体高一(下)期末数学试卷(附答案详解).pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2020-2021学年辽宁省沈阳市郊联体高一(下)期末数学试卷(附答案详解).pdf》由会员分享,可在线阅读,更多相关《2020-2021学年辽宁省沈阳市郊联体高一(下)期末数学试卷(附答案详解).pdf(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、20202020-20212021 学年辽宁省沈阳市郊联体高一(下)期末数学学年辽宁省沈阳市郊联体高一(下)期末数学试卷试卷一、单选题(本大题共8 8 小题,共 40.040.0分)1.已知sin()=5,(2,),则=()3A.5223B.53C.54D.54122.已知复数=+(为虚数单位),则|1|=()3A.2B.4311C.2D.413.设 m,n 是两条不同的直线,是两个不同的平面,下列命题中正确的是()A.若 ,则 B.若 ,/,/,则 C.若 ,则 D.若/,则/B,C 所对的边分别为 a,b,c,=120,4.已知 的内角 A,且(+)2 2=4,则 的面积为()3A.33B
2、.23C.3D.235.斗拱是中国古典建筑最富装饰性的构件之一,并为中国所持有,图一图二是北京故宫太和殿斗拱实物图,图三是斗拱构件之一的“斗”的几何体,本图中的斗是由棱台与长方体形凹槽(长方体去掉一个长相等,宽和高分别为原长方体一半的小长方体)组成.若棱台两底面面积分别是4002,9002,高为 9cm,长方体形凹槽的高为12.那么这个斗的体积是()A.67003B.69003C.138003D.1480036.函数()=2(+),(0,|0 3上单调递增,求的取值范围;(2)若 4,将函数=()图像向左平移3个单位,得到函数=()的图像,且过(6,1),若对意的 6,12,不等式2()()1
3、 0恒成立,求实数 m 的取值范围第 6 页,共 20 页答案和解析1.【答案】D【解析】【分析】利用诱导公式以及同角三角函数的平方关系求值即可本题考查诱导公式及同角三角函数的基本关系的应用,属于基础题【解答】解:因为sin()=5,(2,),=,5 =1 sin2=5故选:D4332.【答案】A【解析】解:=+,22 1=2+12,212223212|1|=()2+()2=故选:A根据已知条件,运用复数的加法运算法则,以及复数模的公式,即可求解本题考查了复数代数形式的加法运算,以及复数模的公式,需要学生熟练掌握公式,属于基础题3.【答案】B【解析】【分析】本题考查直线与直线、直线与平面、平面
4、与平面的位置关系的判定,是基础题,解题时要注意空间思维能力的培养第 7 页,共 20 页由已知条件,利用直线与直线、直线与平面、平面与平面的位置关系,能求出结果【解答】解:若 ,则 m 与 n相交、平行或异面,故A 错误;,/,又/,故 B正确;若 ,则与平行或与相交,故 C 错误;若/,则/或 m,n异面,故 D 错误故选:B4.【答案】C【解析】解:=且()22=4,4222222=()2222=120=2,1=2,1即84=2,即=4,则=4=3222故选:C利用余弦定理表示出 cosC,并利用完全平方公式变形,将已知等式及cosC 的值代入求出 ab的值,再由 sinC的值,利用三角形
5、面积公式即可求出三角形ABC面积此题考查了余弦定理,以及三角形面积公式,熟练掌握余弦定理是解本题的关键1135.【答案】C【解析】解:由题意得棱台的体积1=3 9 (400900400 900)=5700(3);长方体形凹槽是指长方体去掉一个长相等,宽和高分别为原长方体一半的小长方体,长方体凹槽的体积是原长方体体积的4,则长方体凹槽的体积2=4 900 12=8100(3).这个斗的体积是=12=57008100=138003故选:C由已知求得正四棱台的体积,再求出长方体形凹槽的体积,作和得答案331第 8 页,共 20 页本题考查正四棱台及长方体的体积,考查计算能力,是基础题6.【答案】B【
6、解析】解:由图象可得6(12)=+4,解得=,则=255=2,所以()=2(2+),55 ,由22 (12)+=2,可得2 (12)+=22,解得=2+3,由|2,可得=0,=3,则()=2(2+3),对任意 ,()+(2 )=0恒成立,可得()的图象关于点(,0)中心对称,可得2+3=,即=26,=1时,正数 t取得最小值3故选:B由图象可得周期 T,进而得到,代入(12,2)结合的取值范围可求得,从而可得函数的解析式,由()的图象关于点(,0)中心对称,可得()=0,进而得到实数 t的最小正值本题考查三角函数的图象和性质,周期性和对称性的运用,考查方程思想和数形结合思想、运算能力,属于中档
7、题57.【答案】A【解析】解:在锐角 中,A、B、C 分别为 三边 a,b,c 所对的角,+3=2,2(+30)=2,可得sin(+30)=1,=60,+=23,第 9 页,共 20 页22222222=23=3,3解得=3,由=360=2,=2=2()故选:A由3=2,推导出=60,由正弦定理即可求解本题考查了正弦定理,余弦定理,三角函数恒等变换的应用等基础知识,考查运算求解能力,考查函数与方程思想,是中档题=23,推导出b,进而根据8.【答案】C【解析】解:以 A 为原点,射线 AB为 x轴正半轴建立直角坐标系,如图所示,33(2,0),(,),设(,3),其中0 2,221=(3,33)
8、,=(2,3),22=(,225323),|=4227=4(1)227,|244|取最小值27当=4时,|221故选:C,即可求以 A 为原点,射线 AB 为 x轴正半轴建立直角坐标系,用坐标表示出2出第 10 页,共 20 页本题考查了平面向量的模的求法,结合了二次函数求最值的内容,属于中档题9.【答案】ABD=(2,1),【解析】解:A:=(3,1),+=(1,2),)(+=1 2+1 2=0,(+,A 正确,B:+2=(4,3),|+2|=42+32=5,B 正确,方向上的投影的数量是C:向量 在向量D:与向量 方向相同的单位向量是故选:ABD利用向量垂直与数量积的关系判断A,利用求模公
9、式判断B,利用投影公式判断C,利用共线向量的性质判断D本题考查了向量垂直,模,投影与数量积的关系、向量的坐标运算,属于中档题=|1=5(3)2+12=10,C错误,222+1(2,1)=(225 5,5),D正确510.【答案】BCD【解析】解:函数()=3(4+6)图象上所有点的横坐标伸长到原来的2 倍,得到()=3(2+)的图象,6再向右平移6个单位长度,得到函数=()=3(2 6)的图象,故 A 错误;对于 B:当=12时,整理得(12)=0,故 B 正确;对于 C:当=3时,(3)=3,故 C 正确;对于 D:由于 0,3,所以2 6 6,2,故函数在0,3上单调递增,故 D正确故选:
10、BCD首先利用三角函数的平移变换和伸缩变换的应用求出函数的关系式,进一步利用正弦型函数的性质的应用求出结果本题考查的知识要点:三角函数关系式的变换,正弦型函数的性质的应用,主要考查学生的运算能力和数学思维能力,属于基础题 第 11 页,共 20 页11.【答案】ABC【解析】解:选项 A,连接1,由三棱柱的性质可知,/11,11即为异面直线 BC与1.=2,=22,=111=90,即11 11,由直三棱柱的性质可知,1平面111,11平面111,1 11,又11 1=1,11、1平面11,11平面11,11 1,即11=90,选项 A 正确;AE,选项 B,连接1,交1于点 D,连接 MD,再
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2020 2021 学年 辽宁省 沈阳 市郊 联体 期末 数学试卷 答案 详解
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内