高考物理第一轮复习导学206动态平衡、平衡中的临界和极值问题(共9页).doc
《高考物理第一轮复习导学206动态平衡、平衡中的临界和极值问题(共9页).doc》由会员分享,可在线阅读,更多相关《高考物理第一轮复习导学206动态平衡、平衡中的临界和极值问题(共9页).doc(8页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上高考物理第一轮复习同步导学26动态平衡、平衡中的临界和极值问题【考点自清】一、平衡物体的动态问题(1)动态平衡:指通过控制某些物理量使物体的状态发生缓慢变化。在这个过程中物体始终处于一系列平衡状态中。(2)动态平衡特征:一般为三力作用,其中一个力的大小和方向均不变化,一个力的大小变化而方向不变,另一个力的大小和方向均变化。(3)平衡物体动态问题分析方法:解动态问题的关键是抓住不变量,依据不变的量来确定其他量的变化规律,常用的分析方法有解析法和图解法。解析法的基本程序是:对研究对象的任一状态进行受力分析,建立平衡方程,求出应变物理量与自变物理量的一般函数关系式,然后根据
2、自变量的变化情况及变化区间确定应变物理量的变化情况。图解法的基本程序是:对研究对象的状态变化过程中的若干状态进行受力分析,依据某一参量的变化(一般为某一角),在同一图中作出物体在若干状态下的平衡力图(力的平形四边形或三角形),再由动态的力的平行四边形或三角形的边的长度变化及角度变化确定某些力的大小及方向的变化情况。二、物体平衡中的临界和极值问题1、临界问题:(1)平衡物体的临界状态:物体的平衡状态将要变化的状态。物理系统由于某些原因而发生突变(从一种物理现象转变为另一种物理现象,或从一种物理过程转入到另一物理过程的状态)时所处的状态,叫临界状态。临界状态也可理解为“恰好出现”和“恰好不出现”某
3、种现象的状态。(2)临界条件:涉及物体临界状态的问题,解决时一定要注意“恰好出现”或“恰好不出现”等临界条件。平衡物体的临界问题的求解方法一般是采用假设推理法,即先假设怎样,然后再根据平衡条件及有关知识列方程求解。解决这类问题关键是要注意“恰好出现”或“恰好不出现”。2、极值问题:极值是指平衡问题中某些物理量变化时出现最大值或最小值。平衡物体的极值,一般指在力的变化过程中的最大值和最小值问题。【重点精析】一、动态分析问题【例1】如图所示,轻绳的两端分别系在圆环A和小球B上,圆环A套在粗糙的水平直杆MN上。现用水平力F拉着绳子上的一点O,使小球B从图中实线位置缓慢上升到虚线位置,但圆环A始终保持
4、在原位置不动。则在这一过程中,环对杆的摩擦力Ff和环对杆的压力FN的变化情况是( ) A、Ff不变,FN不变 B、Ff增大,FN不变C、Ff增大,FN减小 D、Ff不变,FN减小【解析】以结点O为研究对象进行受力分析如图(a)。由题可知,O点处于动态平衡,则可作出三力的平衡关系图如图(a)。由图可知水平拉力增大。以环、绳和小球构成的整体作为研究对象,作受力分析图如图(b)。由整个系统平衡可知:FN=(mA+mB)g;Ff=F。即Ff增大,FN不变,故B正确。【答案】B【方法提炼】动态平衡问题的处理方法所谓动态平衡问题是指通过控制某些物理量,使物体的状态发生缓慢变化,而在这个过程中物体又始终处于
5、一系列的平衡状态中。(1)图解分析法对研究对象在状态变化过程中的若干状态进行受力分析,依据某一参量的变化,在同一图中作出物体在若干状态下力的平衡图(力的平行四边形),再由动态力的平行四边形各边长度变化及角度变化确定力的大小及方向的变化情况。动态平衡中各力的变化情况是一种常见题型。总结其特点有:合力大小和方向都不变;一个分力的方向不变,分析另一个分力方向变化时两个分力大小的变化情况。用图解法具有简单、直观的优点。(2)相似三角形法对受三力作用而平衡的物体,先正确分析物体的受力,画出受力分析图,再寻找与力的三角形相似的几何三角形,利用相似三角形的性质,建立比例关系,把力的大小变化问题转化为几何三角
6、形边长的大小变化问题进行讨论。(3)解析法根据物体的平衡条件列方程,在解方程时采用数学知识讨论某物理量随变量的变化关系。【例2】如图所示,一个重为G的匀质球放在光滑斜面上,斜面倾角为.在斜面上有一光滑的不计厚度的木板挡住球,使之处于静止状态,今使木板与斜面的夹角缓慢增大至水平,在这个过程中,球对挡板和球对斜面的压力大小如何变化?【解析】解析法:选球为研究对象,球受三个力作用,即重力G、斜面支持力FN1、挡板支持力FN2,受力分析如图所示。由平衡条件可得FN2cos(90)FN1sin 0FN1cos FN2sin(90)G0联立求解并进行三角变换可得FN1FN2G讨论:(1)对FN1:()90
7、,|cot()|FN1(2)对FN2:90,sin FN2综上所述:球对斜面的压力随增大而减小;球对挡板的压力在90时,随增大而增大,当90时,球对挡板的压力最小。图解法:取球为研究对象,球受重力G、斜面支持力FN1,挡板支持力FN2。因为球始终处于平衡状态,故三个力的合力始终为零,三个力构成封闭的三角形,档板逆时针转动时,FN2的方向也逆时针转动,作出如图所示的动态矢量三角形,由图可见,FN2先减小后增大,FN1随增大而始终减小。【方法提炼】从分析可以看出,解析法严谨,但演算较繁杂,多用于定量分析。图解法直观、鲜明,多用于定性分析。【例3】如图所示装置,两根细绳拴住一球,保持两细绳间的夹角不
8、变,若把整个装置顺时针缓慢转过90,则在转动过程中,CA绳的拉力FA大小变化情况是 ,CB绳的拉力FB的大小变化情况是 。【解析】取球为研究对象,由于球处于一个动态平衡过程,球的受力情况如图所示:重力mg,CA绳的拉力FA,CB绳的拉力FB,这三个力的合力为零,根据平衡条件可以作出mg、FA、FB组成矢量三角形如图所示。将装置顺时针缓慢转动的过程中,mg的大小方向不变,而FA、FB的大小方向均在变,但可注意到FA、FB两力方向的夹角不变。那么在矢量三角形中,FA、FB的交点必在以mg所在的边为弦且圆周角为的圆周上,所以在装置顺时针转动过程中,CA绳的拉力FA大小先增大后减小;CB绳的拉力FB的
9、大小一直在减小。二、物体平衡中的临界和极值问题分析【例4】如图所示,物体的质量为2kg,两根轻绳AB和AC的一端连接于竖直墙上,另一端系于物体上,在物体上另施加一个方向与水平线成60的拉力F,若要使两绳都能伸直,求拉力F的大小范围。【解析】A受力如图所示,由平衡条件有Fsin F1sin mg0Fcos F2F1cos 0由式得FF1 F 要使两绳都能伸直,则有F10 F20 由式得F的最大值Fmaxmg/sin 40/3 N由式得F的最小值Fminmg/2sin 20/3 N综合得F的取值范围为20/3 NF40/3 N【方法提炼】抓住题中“若要使两绳都能伸直”这个隐含条件,它是指绳子伸直但
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 高考 物理 第一轮 复习 206 动态平衡 平衡 中的 临界 极值 问题
限制150内