2023年山东考研数学二试题及答案(精品真题).docx
《2023年山东考研数学二试题及答案(精品真题).docx》由会员分享,可在线阅读,更多相关《2023年山东考研数学二试题及答案(精品真题).docx(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年山东考研数学二试题及答案一、选择题:110小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 的斜渐近线为( )A.B. C.D.【答案】B.【解析】由已知,则,所以斜渐近线为.故选B.2. 函数的一个原函数为( ).ABCD【答案】D.【解析】由已知,即连续.所以在处连续且可导,排除A,C.又时,排除B.故选D.3.设数列满足,当时( ).A.是的高阶无穷小B.是的高阶无穷小C.是的等价无穷小D.是的同阶但非等价无穷小【答案】B.【解析】在中,从而.又,从而,所以.故选B.4. 若的通解在上有界,这(
2、).A.B.C.D.【答案】D【解析】微分方程的特征方程为.若 ,则通解为;若,则通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若 ,则,通解为,在上有界.时,若,则,通解为,在上无界.综上可得,.故选D.5. 设函数由参数方程确定,则( ).A.连续,不存在B.存在,在处不连续C.连续,不存在D.存在,在处不连续【答案】C【解析】,故在连续.时,;时,;时,故在连续.,故不存在.故选C.6. 若函数在处取得最小值,则( )A. B. C. D.【答案】A.【解析】已知,则,令,解得故选A.7.设函数.若没有极值点,但曲线有拐点,则的取值范围是( ).A.
3、B.C.1,2)D. 【答案】C.【解析】由于没有极值点,但曲线有拐点,则有两个相等的实根或者没有实根,有两个不相等的实根.于是知解得.故选C.8. 为可逆矩阵,为单位阵,为的伴随矩阵,则A.B.C.D.【答案】B【解析】由于,故.故选B.9. 的规范形为A.B.C.D.【答案】B【解析】,二次型的矩阵为, ,故规范形为,故选B.10.已知向量组 ,若 既可由 线性表示,又可由线性表示,则( )A.B.C.D.【答案】D【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,解得,故.故选D.二、填空题:1116小题,每小题5分,共30分.请将答案写在答题纸指定位置上.11当时,与是等价
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 山东 考研 数学 试题 答案 精品
限制150内