2023年青海考研数学三试题及答案(精品真题).docx
《2023年青海考研数学三试题及答案(精品真题).docx》由会员分享,可在线阅读,更多相关《2023年青海考研数学三试题及答案(精品真题).docx(16页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年青海考研数学三试题及答案一、选择题:110小题,每小题5分,共50分.在每小题给出的四个选项中,只有一个选项是最符合题目要求的,请将所选项前的字母填在答题纸指定位置上.1. 已知函数,则( ).A. 不存在,存在B. 存在,不存在C. 存在,存在D. 不存在,不存在【答案】A.【解析】由已知,则,.当时,;当时,;所以不存在.又,存在.故选A.2. 函数的一个原函数为( ).ABCD【答案】D.【解析】由已知,即连续.所以在处连续且可导,排除A,C.又时,排除B.故选D.3. 若的通解在上有界,则( ).A.B.C.D.【答案】D.【解析】微分方程的特征方程为.若 ,则通解为;若,则
2、通解为;若,则通解为.由于在上有界,若,则中时通解无界,若,则中时通解无界,故.时,若 ,则,通解为,在上有界.时,若,则,通解为,在上无界.综上可得,.4. 设,且与收敛,绝对收敛是绝对收敛的( ).A.充分必要条件B.充分不必要条件 C.必要不充分条件D.既非充分又非必要条件【解析】由已知条件可知为收敛的正项级数,进而绝对收敛.设绝对收敛,则由与比较判别法,得 绝对收玫;设绝对收敛,则由与比较判别法,得绝对收敛.故选A.5. 为可逆矩阵,为单位阵,为的伴随矩阵,则A.B.C.D.【答案】B.【解析】由于,故.故选B.6. 的规范形为A.B.C.D.【答案】B【解析】,二次型的矩阵为, ,故
3、规范形为,故选B.7.已知向量组 ,若 既可由 线性表示,又可由线性表示,则( )A. B. C. D. 【答案】D.【解析】设,则,对关于的方程组的系数矩阵作初等变换化为最简形,解得,故.8.设服从参数为1的泊松分布,则( ).A.B.C.D.【答案】C.【解析】方法一:由已知可得,,,故.故选C.方法二:由于,于是于是.由已知可得,,,故.故选C.9.设为来自总体的简单随机样本,为来自总体的简单随机样本,且两样本相互独立,记,则( )A. B. C. D. 【答案】D.【解析】由两样本相互独立可得与相互独立,且,因此,故选D.10. 已知总体服从正态分布,其中为未知参数,为来自总体的简单随
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023 年青 考研 数学 试题 答案 精品
限制150内