2022数学课程标准解读及实践:八下平行四边形大单元设计.docx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《2022数学课程标准解读及实践:八下平行四边形大单元设计.docx》由会员分享,可在线阅读,更多相关《2022数学课程标准解读及实践:八下平行四边形大单元设计.docx(15页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2022数学课程标准解读及实践:八下平行四边形大单元设计01引言本课例为人教版八年级下册第十八章平行四边形整个单元的教学设计,基于对新课标的学习和理解,围绕大主题是“如何研究一个四边形”重新设计本单元教学,突出大单元的“整合性”。平行四边形及特殊的平行四边形(矩形、菱形、正方形)都是常见的四边形,在学习了平行线、全等三角形、轴对称图形等知识的基础上进行的学习,是上述内容的后续和深化。本单元的基本设计思想是:重视几何图形研究的一般活动经验的总结和应用,通过复习三角形,总结出三角形的研究思路、研究内容、研究方法,把这种经验一般化后,应用到平行四边形的系统研究中,探索平行四边形及其特例矩形、菱形、正
2、方形的定义、性质和判定,把具体知识的探索发现过程(图形观察、测量、实验与想像、归纳与猜想)与证实过程(演绎推理)融入几何图形研究活动中,让学生明确图形的研究内容(图形的构成要素与相关要素的位置和数量关系),学会几何研究的思路、方法,积累几何图形研究活动经验,发展“四能”以及几何直观、推理能力等数学核心素养。02大单元教学设计2.1单元内容分析对于教材和学习内容的分析从以下几个方面进行分析:研究对象:平行四边形是特殊的四边形,而矩形、菱形、正方形又属于特殊的平行四边形,正方形还是特殊的矩形或菱形,研究对象从一般到特殊。研究内容:本章的每一种图形都分别从定义、性质、判定三个方面进行研究。定义:都反
3、映了该图形与一般平行四边形相比在某一方面的独特之处;性质:都包含一般性质与特殊性质两个方面,从组成图形的基本要素(边、角)或相关要素(对角线)之间的数量关系或位置关系、图形整体的对称性这两个维度,由一般到特殊、由静到动、由局部到整体地反映图形的特征;判定:都反映了能判断一个图形是否属于某图形的最少条件,并且判断的条件都来源于性质,判定与性质互为逆命题。从定义、性质和判定的逻辑关系看,每一种图形的定义都是它的充要条件,性质都是它的必要条件,判定都是它的充分条件,所以图形的某些特征是图形的充要条件。研究方法:定义方式:每一个图形都通过属加种差的方式进行定义;性质发现:性质都是通过观察、测量和实验发
4、现,然后通过举反例或演绎推理证明猜想的真伪,定义是性质推理的起点。判定证明:每一个图形的判定都是从性质所提供的特征出发,猜想判定的最少条件,然后通过举反例或演绎推理证明猜想的真伪,证明的大前提是定义和已证判定。2.2单元目标制定基于课标、学情及教材、单元大概念、核心素养能力对单元教学所要达成的目标进行细化,参考崔允漷老师的单元学历案目标叙写制定以下学习目标:学生能够通过生活情景抽象出平行四边形、矩形、菱形、正方形、梯形的概念,以及它们之间的关系,绘制平行四边形家族谱系,培养抽象能力。学生能够探索并证明平行四边形的性质定理,类比探索并证明矩形、菱形和正方形的性质定理,归纳研究几何图形性质的方法。
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 数学课程 标准 解读 实践 平行四边形 单元 设计
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内