3.1 自由电子理论(1).pdf
《3.1 自由电子理论(1).pdf》由会员分享,可在线阅读,更多相关《3.1 自由电子理论(1).pdf(51页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Chapter 3Free electrons in solidsProfileTodays lectureElectronAtomBindingBorn-Oppenheimer Approximation(1/2)EnkkValence BandValence BandValence BandConduction BandConduction BandConduction BandQuantum MechanicsClassical TheoryCrystal DynamicsFree Electron ModelEnergy BandsCrystal StructureAtoms move
2、memtElectrons movementCrystal dynamicsElectron theoryFree electron theoryEnergy band theory IntroductionChapter 3 Free electrons in solids IntroductionChapter 3 Free electrons in solidsPhysics for computer science students:with emphasis on atomic and semiconductor physicsAcknowledgement:Chapter 3 Fr
3、ee electrons in solids3.1 Free electron model3.1.1 Drude Model-Classical Free Electron Model3.1.2 Sommerfeld Model-Quantum Mechanical Free Electron Model3.2 Heat capacity of free electron gas3.3 Transport properties of conductive electronsIndependent electron approximationFree electron approximation
4、Collision assumptionRelaxation time approximationDrudeClassical Free Electron Model Independent electron approximationFree electron approximationNo collisionQuantum statistics:Fermi-Dirac DistributionSommerfeldQuantum Mechanical Free Electron ModelEnergy band theoryFree Electron Model+Periodical pot
5、ential fieldDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM IntroductionChapter 3 Free electrons in solids3.1 Free electron model3.1.1 Drude Model-Classical Free Electron Model3.1.2 Sommerfeld Model-Quantum Mechanical Free Electron Model3.2 Heat capacity of free electron gas3.3 Tra
6、nsport properties of conductive electrons3.4 Electron emission and contacting voltage Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMUIRJOhms LawJ:Current density1:Resistivity:Conductivity:Electric field intensityDrude Model Failure of Drude ModelPaul Karl Ludwig DrudeDrude Model e
7、lectronsThe Drude model of electrical conduction was proposed in 1900 by Paul Drudeto explain the transport properties of electrons in materials(especially metals).The model,which is an application of kinetic theory,assumes that themicroscopic behavior of electrons in a solid may be treated classica
8、lly andlooks much like a pinball machine,with a sea of constantly jittering electronsbouncing and re-bouncing off heavier,relatively immobile positive ions.Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMAssumption of the electron gas:(1)Independent electron approximationNo electros
9、tatic interaction and collision among free electrons(2)Free electron approximationNo electrostatic interaction between free electrons and ions(3)Collision assumptionVelocity of electrons after collision with ions only concerns with temperature,but not the velocity before collision(4)Relaxation time
10、approximationRelaxation time is independent with the position and velocity of electronsFree electron gasDrude Model Failure of Drude ModelDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEMWithout electric field,free e-moves randomly1/251131.2 10 m sec(120km sec)RMSBvk T mAt room tempe
11、rature,No net current With electric field,things are differentvd:drift velocity(漂移速度漂移速度),vd0KFermi-Dirac distributionFind Fermi energy EFk distributionDensity of stateFind the electron number near the EFDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distributio
12、n Fermi Energy Density of State e-number near EF e-gas EnergyU(x,t)U(x)i/(,)()eEtx tx222d()()2d()xExxmUxU(x)0a x()0,0(),0U xxaU xxa x222d2dEmx222d20dmEx2mEk sincosAkxBkx2()2kEm(0)cos00()sincos0BBaAkaBka0sin0BAkaInfinite Potential Well 222d0dkx()0,0 xxa xDrude Model-Classical FEM Sommerfeld Model-Qua
13、ntum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energysin0Aka sin0ka kan1,2,3,.n()sinnxAxa0 xa201adx2Aa2()sinnxxaa1,2,3,.n U(x)0a x 222sinnnxaaE1E1E12mEk 222d20dmExknasincosAkxBkxDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FE
14、M Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyU(x)0a x 2mEk 222d20dmExsin0Aka sincosAkxBkxkan1,2,3,.n kna22222nEEnma1,2,3,.n m,a,E,quantum effect strengthen nano-material22122Ema22222Ema1n 2n E1E1E1The energy of a particle in a box(black circles)and a f
15、ree particle(grey line)both depend upon wavenumber.2()2kEmDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM.00,0Ux y zLUx y zL
16、x y z 2222222(,)(,)2x y zEx y zmxyz,)()()()x y zxyz(U(x)0a x 222d20dmEx2()sinxkxa22222222nkEEnmma1,2,3,.n()0,0(),0U xxaU xxa xL222d()()()2dU xxExm x1n 2n E1E1E13D Infinite Potential Well Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energykna1D Infinite Potenti
17、al Well 1D Infinite Potential Well Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM22222221()1()1()20()()()xyzmExxyyzzxyzkk ik jk l222kEm2222222221()1()1()()0()()()xyzxyzkkkxxyyzz2221()()xxkxx 2221()()yykyy 2221()()zzkzz L2222222(,)(,)2x y zEx y zmxyz222()()0 xxkxx222()()0yykyy222()
18、()0zzkzz2222222()()()()()()2xyzExyzmxyz.00,0.,.Ux y zLUx y zL x y z Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy2222()2xyzEkkkm0,()0;,()00,()0;,()00,()0;,()0 xxxLxyyyLyzzzLz()sinxxxAk xxxnkL()sinyyyAk yyynkL()sinzzzAk zzznkL,)()()()x y zxyz(1,2,3,.xn 1,
19、2,3,.yn 1,2,3,.zn 222222222222()222()xxyzzyEkkkkmmmLnnn,1,2,3,.xyzn n n L2222222(,)(,)2x y zEx y zmxyzDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy222()()0 xxkxx222()()0yykyy222()()0zzkzzB
20、oundary conditionFind the characteristics of motion of the free electronsQuantized EnergyHow the energy levels are occupied by free electronsFermi-Dirac distributionFind Fermi energy EFFind the electron number near the EF1n 2n E1E1E10K0KDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical F
21、EM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyFermi-Dirac Distribution()()/()/111111llBFBllEEk TE Ek TlFeee Drude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF
22、 e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyOccupancy Condition at T=0K-Classical theory222222()2xyzEnnnmL,1,2,3,.xyzn n n L2220()xyzE nnn22022EmLDrude Model-Classical FEM So
23、mmerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyOccupancy Condition at T=0K-Quantum mechanicallyPaulis Exclusion PrincipleDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution
24、 Fermi Energy Density of State e-number near EF e-gas EnergyOccupancy Condition at T=0K-Quantum mechanicallyThe Fermi energy:the highest energy a fermion can take atabsolute zero temperature.Fermi-Dirac Distribution()()/()/111111llBFBllEEk TE Ek TlFeee Drude Model-Classical FEM Sommerfeld Model-Quan
25、tum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas EnergyDrude Model-Classical FEM Sommerfeld Model-Quantum Mechanical FEM Potential Well F-D Distribution Fermi Energy Density of State e-number near EF e-gas Energy()/1()1FBE Ek TF EeOccupancy Cond
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 3.1 自由电子理论1 自由电子 理论
限制150内