2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题压轴练(解析版).docx
《2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题压轴练(解析版).docx》由会员分享,可在线阅读,更多相关《2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题压轴练(解析版).docx(77页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学重点专题三轮冲刺演练【一专三练】 专题04 概率统计与期望方差分布列大题压轴练-新高考数学复习分层训练(新高考通用)1(2023秋浙江高三校联考期末)抽屉中装有5双规格相同的筷子,其中2双是一次性筷子,3双是非一次性筷子,每次使用筷子时,从抽屉中随机取出1双,若取出的是一次性筷子,则使用后直接丢弃,若取出的是非一次性筷子,则使用后经过清洗再次放入抽屉中,求:(1)在第2次取出的是非一次性筷子的条件下,第1次取出的是一次性筷子的概率;(2)取了3次后,取出的一次性筷子的个数(双)的分布列及数学期望;(3)取了,)次后,所有一次性筷子刚好全部取出的概率2(2022江苏南京南京市江
2、宁高级中学校考模拟预测)2022年2月6日,中国女足在两球落后的情况下,以3比2逆转击败韩国女足,成功夺得亚洲杯冠军,在之前的半决赛中,中国女足通过点球大战惊险战胜日本女足,其中门将朱钰两度扑出日本队员的点球,表现神勇(1)扑点球的难度一般比较大,假设罚点球的球员会等可能地随机选择球门的左、中、右三个方向射门,门将也会等可能地随机选择球门的左、中、右三个方向来扑点球,而且门将即使方向判断正确也有的可能性扑不到球不考虑其它因素,在一次点球大战中,求门将在前三次扑出点球的个数X的分布列和期望;(2)好成绩的取得离不开平时的努力训练,甲、乙、丙、丁4名女足队员在某次传接球的训练中,球从甲脚下开始,等
3、可能地随机传向另外3人中的1人,接球者接到球后再等可能地随机传向另外3人中的1人,如此不停地传下去,假设传出的球都能接住记第n次传球之前球在甲脚下的概率为,易知试证明为等比数列;设第n次传球之前球在乙脚下的概率为,比较与的大小3(2023春浙江杭州高三浙江省杭州第二中学校考开学考试)中国在第75届联合国大会上承诺,将采取更加有力的政策和措施,力争于2030年之前使二氧化碳的排放达到峰值,努力争取2060年之前实现碳中和(简称“双碳目标”),此举展现了我国应对气候变化的坚定决心,预示着中国经济结构和经济社会运转方式将产生深刻变革,极大促进我国产业链的清洁化和绿色化.新能源汽车电动汽车是重要的战略
4、新兴产业,对于实现“双碳目标”具有重要的作用.为了解某一地区电动汽车销售情况,一机构根据统计数据,用最小二乘法得到电动汽车销量(单位:万台)关于(年份)的线性回归方程为,且销量的方差为,年份的方差为.(1)求与的相关系数,并据此判断电动汽车销量与年份的相关性强弱;(2)该机构还调查了该地区90位购车车主的性别与购车种类情况,得到的数据如下表:性别购买非电动汽车购买电动汽车总计男性39645女性301545总计692190依据小概率值的独立性检验,能否认为购买电动汽车与车主性别有关;(3)在购买电动汽车的车主中按照性别进行分层抽样抽取7人,再从这7人中随机抽取3人,记这3人中,男性的人数为,求的
5、分布列和数学期望.参考数据:;参考公式:(i)线性回归方程:,其中;(ii)相关系数:,若,则可判断与线性相关较强.(iii),其中.附表:4(2023浙江模拟预测)2022年卡塔尔世界杯决赛圈共有32队参加,其中欧洲球队有13支,分别是德国、丹麦、法国、西班牙、英格兰、克罗地亚、比利时、荷兰、塞尔维亚、瑞士、葡萄牙、波兰、威尔士世界杯决赛圈赛程分为小组赛和淘汰赛,当进入淘汰赛阶段时,比赛必须要分出胜负淘汰赛规则如下:在比赛常规时间90分钟内分出胜负,比赛结束,若比分相同,则进入30分钟的加时赛在加时赛分出胜负,比赛结束,若加时赛比分依然相同,就要通过点球大战来分出最后的胜负点球大战分为2个阶
6、段第一阶段:前5轮双方各派5名球员,依次踢点球,以5轮的总进球数作为标准(非必要无需踢满5轮),前5轮合计踢进点球数更多的球队获得比赛的胜利第二阶段:如果前5轮还是平局,进入“突然死亡”阶段,双方依次轮流踢点球,如果在该阶段一轮里,双方都进球或者双方都不进球,则继续下一轮,直到某一轮里,一方罚进点球,另一方没罚进,比赛结束,罚进点球的一方获得最终的胜利下表是2022年卡塔尔世界杯淘汰赛阶段的比赛结果:淘汰赛比赛结果淘汰赛比赛结果1/8决赛荷兰美国1/4决赛克罗地亚巴西阿根廷澳大利亚荷兰阿根廷法国波兰摩洛哥葡萄牙英格兰塞内加尔英格兰法国日本克罗地亚半决赛阿根廷克罗地亚巴西韩国法国摩洛哥摩洛哥西班
7、牙季军赛克罗地亚摩洛哥葡萄牙瑞士决赛阿根廷法国注:“阿根廷法国”表示阿根廷与法国在常规比赛及加时赛的比分为,在点球大战中阿根廷战胜法国(1)请根据上表估计在世界杯淘汰赛阶段通过点球大战分出胜负的概率(2)根据题意填写下面的列联表,并通过计算判断是否能在犯错的概率不超过0.01的前提下认为“32支决赛圈球队闯入8强”与是否为欧洲球队有关欧洲球队其他球队合计闯入8强未闯入8强合计(3)若甲、乙两队在淘汰赛相遇,经过120分钟比赛未分出胜负,双方进入点球大战已知甲队球员每轮踢进点球的概率为p,乙队球员每轮踢进点球的概率为,求在点球大战中,两队前2轮比分为的条件下,甲队在第一阶段获得比赛胜利的概率(用
8、p表示)参考公式:0.10.050.010.0050.0012.7063.8416.6357.87910.8285(2022秋江苏常州高三校联考阶段练习)汽车尾气排放超标是全球变暖、海平面上升的重要因素我国近几年着重强调可持续发展,加大在新能源项目的支持力度,积极推动新能源汽车产业发展,某汽车制造企业对某地区新能源汽车的销售情况进行调查,得到下面的统计表:年份20172018201920202021年份代码12345销量万辆1012172026(1)统计表明销量与年份代码有较强的线性相关关系,求关于的线性回归方程,并预测该地区新能源汽车的销量最早在哪一年能突破50万辆;(2)为了解购车车主的性
9、别与购车种类(分为新能源汽车与传统燃油汽车)的情况,该企业心随机调查了该地区200位购车车主的购车情况作为样本其中男性车主中购置传统燃油汽车的有名,购置新能源汽车的有45名,女性车主中有20名购置传统燃油汽车若,将样本中购置新能源汽车的性别占比作为概率,以样本估计总体,试用(1)中的线性回归方程预测该地区2023年购置新能源汽车的女性车主的人数(假设每位车主只购买一辆汽车,结果精确到千人);设男性车主中购置新能源汽车的概率为,将样本中的频率视为概率,从被调查的所有男性车主中随机抽取5人,记恰有3人购置新能源汽车的概率为,求当为何值时,最大附: 为回归方程,6(2022秋江苏南通高三校考期中)核
10、酸检测也就是病毒DNA和RNA的检测,是目前病毒检测最先进的检验方法,在临床上主要用于新型冠状乙肝、丙肝和艾滋病的病毒检测.通过核酸检测,可以检测血液中是否存在病毒核酸,以诊断机体有无病原体感染.某研究机构为了提高检测效率降低检测成本,设计了如下试验,预备12份试验用血液标本,其中2份阳性,10份阴性,从标本中随机取出n份分为一组,将样本分成若干组,从每一组的标本中各取部分,混合后检测,若结果为阴性,则判定该组标本均为阴性,不再逐一检测;若结果为阳性,需对该组标本逐一检测.以此类推,直到确定所有样本的结果.若每次检测费用为a元,记检测的总费用为X元.(1)当n=3时,求X的分布列和数学期望.(
11、2)比较n=3与n=4两种方案哪一个更好,说明理由.7(2023秋辽宁高三校联考期末)2022年冬奥会由北京和张家口联合举办,其中冰壶比赛在改造一新的水立方进行.女子冰壶比赛由来自全球的十支最优秀的队伍参加,中国女子冰壶队作为东道主对奥运冠军发起冲击.奥运会冰壶比赛将分为循环赛淘汰赛和决赛三部分,其中循环赛前三名晋级淘汰赛.在淘汰赛中,循环赛第一和第二的两支队伍先进行一场比赛,胜者晋级最后的决赛,负者与循环赛第三名再进行一场比赛,胜者晋级决赛,败者即为本届比赛的第三名.决赛决出比赛的第一名与第二名.(1)循环赛进行九轮比赛,每支队伍都需要与其余九支队伍各进行一场比赛.中国队的主要对手包括加拿大
12、队瑞士队瑞典队英国队.若循环赛的赛程完全随机排列,则中国队在前六轮之内完成与主要对手交锋的概率是多少?(2)若中国队以循环赛第二名的成绩进入淘汰赛,同时进入淘汰赛的还有排名第一的加拿大队和排名第三的瑞士队.过往战绩表明,中国队与加拿大队对战获胜的概率为40%,与瑞士队对战获胜的概率为60%,加拿大队战胜瑞士队的概率为70%.假定每场比赛胜负的概率独立.若以随机变量X表示中国队最终获得的名次,求其分布列和数学期望.8(2023江苏宿迁江苏省沭阳高级中学校考模拟预测)为丰富学生课外生活,某市组织了高中生钢笔书法比赛,比赛分两个阶段进行:第一阶段由评委给出所有参赛作品评分,并确定优胜者;第二阶段为附
13、加赛,参赛人员由组委会按规则另行确定.数据统计员对第一阶段的分数进行了统计分析,这些分数都在内,在以组距为5画分数的频率分布直方图(设“”)时,发现满足.(1)试确定的所有取值,并求;(2)组委会确定:在第一阶段比赛中低于85分的参赛者无缘获奖也不能参加附加赛;分数在的参赛者评为一等奖;分数在的同学评为二等奖,但通过附加赛有的概率提升为一等奖;分数在的同学评为三等奖,但通过附加赛有的概率提升为二等奖(所有参加附加赛的获奖人员均不降低获奖等级).已知学生和均参加了本次比赛,且学生在第一阶段评为二等奖.()求学生最终获奖等级不低于学生的最终获奖等级的概率;()已知学生和都获奖,记两位同学最终获得一
14、等奖的人数为,求的分布列和数学期望.9(2023河北衡水衡水市第二中学校考模拟预测)某游戏中的角色“突击者”的攻击有一段冷却时间(即发动一次攻击后需经过一段时间才能再次发动攻击).其拥有两个技能,技能一是每次发动攻击后有的概率使自己的下一次攻击立即冷却完毕并直接发动,该技能可以连续触发,从而可能连续多次跳过冷却时间持续发动攻击;技能二是每次发动攻击时有的概率使得本次攻击以及接下来的攻击的伤害全部变为原来的2倍,但是多次触发时效果不可叠加(相当于多次触发技能二时仅得到第一次触发带来的2倍伤害加成).每次攻击发动时先判定技能二是否触发,再判定技能一是否触发.发动一次攻击并连续多次触发技能一而带来的
15、连续攻击称为一轮攻击,造成的总伤害称为一轮攻击的伤害.假设“突击者”单次攻击的伤害为1,技能一和技能二的各次触发均彼此独立:(1)当“突击者”发动一轮攻击时,记事件A为“技能一和技能二的触发次数之和为2”,事件B为“技能一和技能二各触发1次”,求条件概率(2)设n是正整数,“突击者”一轮攻击造成的伤害为的概率记为,求.10(2023春福建南平高三校联考阶段练习)在上海举办的第五届中国国际进口博览会中,硬币大小的无导线心脏起搏器引起广大参会者的关注这种起搏器体积只有传统起搏器的,其无线充电器的使用更是避免了传统起搏器囊袋及导线引发的相关并发症在起搏器研发后期,某企业快速启动无线充电器主控芯片试生
16、产,试产期同步进行产品检测,检测包括智能检测与人工抽检智能检测在生产线上自动完成,包含安全检测、电池检测、性能检测等三项指标,人工抽检仅对智能检测三项指标均达标的产品进行抽样检测,且仅设置一个综合指标,四项指标均达标的产品才能视为合格品已知试产期的产品,智能检测三项指标的达标率约为,设人工抽检的综合指标不达标率为()(1)求每个芯片智能检测不达标的概率;(2)人工抽检30个芯片,记恰有1个不达标的概率为,求的极大值点;(3)若芯片的合格率不超过,则需对生产工序进行改良以(2)中确定的作为p的值,判断该企业是否需对生产工序进行改良11(2023福建莆田统考二模)互花米草是禾本科草本植物,其根系发
17、达,具有极高的繁殖系数,对近海生态具有较大的危害为尽快消除互花米草危害,2022年10月24日,市政府印发了莆田市互花米草除治攻坚实施方案,对全市除治攻坚行动做了具体部署某研究小组为了解甲、乙两镇的互花米草根系分布深度情况,采用按比例分层抽样的方法抽取样本已知甲镇的样本容量,样本平均数,样本方差;乙镇的样本容量,样本平均数,样本方差(1)求由两镇样本组成的总样本的平均数及其方差;(2)为营造“广泛发动、全民参与”的浓厚氛围,甲、乙两镇决定进行一次“互花米草除治大练兵”比赛,两镇各派一支代表队参加,经抽签确定第一场在甲镇举行比赛规则:每场比赛直至分出胜负为止,胜方得1分,负方得0分,下一场在负方
18、举行,先得2分的代表队获胜,比赛结束当比赛在甲镇举行时,甲镇代表队获胜的概率为,当比赛在乙镇举行时,甲镇代表队获胜的概率为假设每场比赛结果相互独立.甲镇代表队的最终得分记为X,求参考数据:12(2023福建厦门统考二模)移动物联网广泛应用于生产制造、公共服务、个人消费等领域截至2022年底,我国移动物联网连接数达18.45亿户,成为全球主要经济体中首个实现“物超人”的国家右图是2018-2022年移动物联网连接数W与年份代码t的散点图,其中年份2018-2022对应的t分别为15(1)根据散点图推断两个变量是否线性相关计算样本相关系数(精确到0.01),并推断它们的相关程度;(2)(i)假设变
19、量x与变量Y的n对观测数据为(x1,y1),(x2,y2),(xn,yn),两个变量满足一元线性回归模型(随机误差)请推导:当随机误差平方和Q取得最小值时,参数b的最小二乘估计(ii)令变量,则变量x与变量Y满足一元线性回归模型利用(i)中结论求y关于x的经验回归方程,并预测2024年移动物联网连接数附:样本相关系数,13(2022秋山东潍坊高三统考阶段练习)学校篮球队30名同学按照1,2,30号站成一列做传球投篮练习,篮球首先由1号传出,训练规则要求:第号同学得到球后传给号同学的概率为,传给号同学的概率为,直到传到第29号(投篮练习)或第30号(投篮练习)时,认定一轮训练结束,已知29号同学
20、投篮命中的概率为,30号同学投篮命中的概率为,设传球传到第号的概率为(1)求的值;(2)证明:是等比数列;(3)比较29号和30号投篮命中的概率大小14(2022秋山东高三校联考阶段练习)某公司在一种传染病毒的检测试剂品上加大了研发投入,其研发的检验试剂品分为两类不同剂型和现对其进行两次检测,第一次检测时两类试剂和合格的概率分别为和,第二次检测时两类试剂和合格的概率分别为和已知两次检测过程相互独立,两次检测均合格,试剂品才算合格(1)设经过两次检测后两类试剂和合格的种类数为,求的分布列和数学期望;(2)若地区排查期间,一户4口之家被确认为“与确诊患者的密切接触者”,这种情况下医护人员要对其家庭
21、成员逐一使用试剂品进行检测,如果有一人检测呈阳性,则检测结束,并确定该家庭为“感染高危户”设该家庭每个成员检测呈阳性的概率均为且相互独立,该家庭至少检测了3个人才确定为“感染高危户”的概率为,若当时,最大,求的值15(2022秋山东青岛高三统考期末)由个小正方形构成长方形网格有行和列.每次将一个小球放到一个小正方形内,放满为止,记为一轮.每次放白球的频率为,放红球的概率为q,.(1)若,记表示100轮放球试验中“每一列至少一个红球”的轮数,统计数据如表:n12345y7656423026求y关于n的回归方程,并预测时,y的值;(精确到1)(2)若,记在每列都有白球的条件下,含红球的行数为随机变
22、量,求的分布列和数学期望;(3)求事件“不是每一列都至少一个红球”发生的概率,并证明:.附:经验回归方程系数:,.16(2023山东枣庄统考二模)某市正在创建全国文明城市,学校号召师生利用周末从事创城志愿活动高三(1)班一组有男生4人,女生2人,现随机选取2人作为志愿者参加活动,志愿活动共有交通协管员、创建宜传员、文明监督员三项可供选择每名女生至多从中选择参加2项活动,且选择参加1项或2项的可能性均为;每名男生至少从中选择参加2项活动,且选择参加2项或3项的可能性也均为每人每参加1项活动可获得综合评价10分,选择参加几项活动彼此互不彩响,求(1)在有女生参加活动的条件下,恰有一名女生的概率;(
23、2)记随机选取的两人得分之和为X,求X的期望17(2022湖北省直辖县级单位湖北省仙桃中学校考模拟预测)治疗慢性乙肝在医学上一直都是一个难题,因为基本不能治愈,只是可以让肝功能正常,不可以清除病毒,而且发展严重后还具有传染性,所以在各种体检中肝功能的检查是必不可少的.在对某学校初中一个班上64名学生进行体检后,不小心将2份携带乙肝的血液样本和62份正常样本(都用试管独立装好的)混在了一起,现在要将它们找出来,试管上都有标签,采用将共64份样品采用混检的方式,先将其平均分成两组,每组32份,将每组的32份进行混检,若携带病毒的在同一组,则将这一组继续取两份平均分组的混合样本进行检验,若携带病毒的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题压轴练解析版 2023 年高 数学 重点 专题 三轮 冲刺 演练 04 概率 统计 期望 方差 分布 列大题 压轴 解析
链接地址:https://www.taowenge.com/p-89760752.html
限制150内