广东省广州市2022-2023学年高三下学期第二次模拟考试数学含答案.pdf
《广东省广州市2022-2023学年高三下学期第二次模拟考试数学含答案.pdf》由会员分享,可在线阅读,更多相关《广东省广州市2022-2023学年高三下学期第二次模拟考试数学含答案.pdf(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 1 2023 年广州市普通高中毕业班综合测试(二)数学试题参考答案及评分标准 评分说明:1本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要考查内容比照评分参考制订相应的评分细则 2对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分 3解答右端所注分数,表示考生正确做到这一步应得的累加分数 4只给整数分数选择题不给中间分 一、选择题:本题共一、选择题:本题共 8 小题,每小题小题,每小题 5 分,共分,共 40 分
2、分 二、选择题:本题共二、选择题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分 9.BC 10.ACD 11.BD 12.BCD 三、填空题:本题共三、填空题:本题共 4 小题,每小题小题,每小题 5 分,共分,共 20 分分 13.8 14.3或者*3k kN 15.10 16.12,33212 四、解答题:本题共四、解答题:本题共 6 小题,共小题,共 70 分分 17.(10 分)(1)解:由1+(1)=2nnn+naS,得21=2aS,即21=2aa,1 分 32=4a+S,即3124aaa,3 分 又30a,所以11a,23a.5 分(2)解:当2nk时,221
3、2+=2kk+kaS,6 分 当21nk时,21221=2kkk-aS,7 分 得22121222122kkkkkkaaSS,得2121223 2kkkaa.8 分 题号 1 2 3 4 5 6 7 8 答案 C B D D A A D B 2 因为12nnnbaa,所以2462nbbbb 3254762122222nnaaaaaaaa 33 2 3 2 +53 2+213 2n 9 分 21 431 4n 2122n.10 分 18.(12 分)(1)解:令1ux,则y关于u的线性回归方程为yu,1 分 依题意,得10110221103502102001.60.910iiiiiu yuyuu
4、,3 分 70200 0.310yu,4 分 则10200yu.5 分 所以y关于x的回归方程为20010yx.6 分(2)解法 1:由20010yx,得20010 xy,7 分 年利润10Mmx 8 分 2220020010010500251010yyyy 9 分 212090.8500y.10分 当20y 时,年利润M取得最大值,此时,200200201020 10 xy,11 分 所以,当年技术创新投入为20千万元时,年利润的预报值最大.12 分 3 解法 2:由20010yx,年利润10Mmx 7 分 22200100105002510yyxy 8 分 2120022001010100
5、1050025xxxx 9 分 2118090.820 x.10 分 当1120 x,即20 x 时,年利润M取得最大值,11 分 所以,当年技术创新投入为20千万元时,年利润的预报值最大.12 分 19.(12 分)(1)解法 1:因为coscosbA aBbc,由余弦定理有22222222bcaacbbabcbcac,2 分 化简得222bcabc,3 分 由余弦定理得2221cos22bcaAbc,4 分 因为 0A,所以3A.5 分 解法 2:因为coscosbA aBbc,由正弦定理sinsinsinabcABC,得sincossincossinsinBAABBC,1 分 因为()C
6、AB,所以sincossincossin()sinBAABABB.2 分 化简得 sincossincossinBABAB,3 分 因为 sin0B,所以 1cos2A.4 分 因为 0A,4 所以 3A.5 分(2)解:由3cos3B,得26sin1 cos3BB.6 分 因为ABC,得23CB,则2sinsin3CB22sincoscossin33BB 33162323 1626.7 分 设BAD,则3CAD.在ABD和ACD中,由正弦定理得 sinsinBDADB36AD,8 分 6sin36sin3CDADADC,9 分 因为2CDBD,上面两式相除得6sin36 sin3,得316c
7、ossin36 sin22,10 分 即2cos26 sin,11 分 得2tan3226.所以tanBAD32.12 分 20.(12 分)解法一:(1)证明:取1BC的中点F,连接DF,EF,因为点D是BC的中点,5 FzyxC1B1A1EDCBA 所以DF1CC1AA,DF121112CCAAAE.则A,E,F,D四点共面.1 分 因为AD平面1BC E,平面AEFD平面1BC EEF,所以ADEF.2 分 因为ABAC,所以ADBC.3 分 在直三棱柱111ABCABC中,1CC 平面ABC,则1ADCC.又1BCCCC,BC 平面11BBC C,1CC 平面11BBC C,所以AD
8、平面11BBC C.4 分 所以EF 平面11BBC C.又EF 平面1BC E,所以平面1BC E平面11BBC C.5 分(2)解:由(1)可知四边形AEFD是平行四边形,所以ADEF.设203BCaa,在 R tADB中,2229ADABBDa,所以EF 29a.三棱锥11BBC E的体积 111 1BBC EE BBCVV1111132BB BC EF29aa2229922aa.7 分 当且仅当29aa,即3 22a 时,等号成立.故当三棱锥11BBC E的体积最大时,23 2BCa.8 分 在 Rt ADC中,223 22ADACCD.以D为原点,DB所在直线为x轴,AD所在直线为y
9、轴,DF所在直线为z轴,6 建立空间直角坐标系Dxyz,则3 2,0,02B,3 2 30,22E,13 2,0,32C,3 20,02A,3 2,0,02C,3 23 2 3,222BE,13 2,0,3BC ,3 2 3 2,022AC .9 分 设平面1BC E的法向量为,x y zn,由10,0,BEBCnn得3 23 230,2223 230,xyzxz 令1x,则2z,0y.所以平面1BC E的一个法向量为1,0,2n.10分 则3 262cos,63 3ACACAC nnn.11 分 设直线AC与平面1BC E所成角为,则6sincos,6AC n.所以直线AC与平面1BC E所
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 广东省 广州市 2022 2023 学年 下学 第二次 模拟考试 数学 答案
限制150内