2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题拔高练(解析版).docx
《2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题拔高练(解析版).docx》由会员分享,可在线阅读,更多相关《2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题拔高练(解析版).docx(69页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2023年高考数学重点专题三轮冲刺演练【一专三练】 专题04 概率统计与期望方差分布列大题拔高练-新高考数学复习分层训练(新高考通用)1(2023广东广州高三广东实验中学校考阶段练习)为了检测某种抗病毒疫苗的免疫效果,需要进行动物与人体试验研究人员将疫苗注射到200只小白鼠体内,一段时间后测量小白鼠的某项指标值,按分组,绘制频率分布直方图如图所示,实验发现小白鼠体内产生抗体的共有160只,其中该项指标值不小于60的有110只,假设小白鼠注射疫苗后是否产生抗体相互独立抗体指标值合计小于60不小于60有抗体没有抗体合计(1)填写下面的22列联表,并根据列联表及的独立性检验,判断能否认为注射疫苗后小
2、白鼠产生抗体与指标值不小于60有关(单位:只)(2)为检验疫苗二次接种的免疫抗体性,对第一次注射疫苗后没有产生抗体的40只小白鼠进行第二次注射疫苗,结果又有20只小自鼠产生抗体(i)用频率估计概率,求一只小白鼠注射2次疫苗后产生抗体的概率p;(ii)以(i)中确定的概率p作为人体注射2次疫苗后产生抗体的概率,进行人体接种试验,记n个人注射2次疫苗后产生抗体的数量为随机变量X试验后统计数据显示,当X =99时,P(X)取最大值,求参加人体接种试验的人数n参考公式:(其中为样本容量)0.500.400.250.150.1000.0500.0250.4550.7081.3232.0722.7063.
3、8415.0242(2023春广东惠州高三校考阶段练习)北京冬奥会的举办使得人们对冰雪运动的关注度和参与度持续提高,某地很多中小学开展了模拟冬奥会赛事的活动,为了深入了解学生在“自由式滑雪”和“单板滑雪”两项活动的参与情况,在该地随机选取了10所学校进行研究,得到如图数据:(1)从这10所学校中随机抽取2所,在抽取的2所学校参与“单板滑雪”的人数超过30人的条件下,求这2所学校参与“自由式滑雪”的人数超过30人的概率;(2)“自由式滑雪”参与人数超过40人的学校可以作为“基地学校”,现在从这10所学校中随机抽取3所,记为选出“基地学校”的个数,求的分布列和数学期望3(2023广东广州统考一模)
4、为了拓展学生的知识面,提高学生对航空航天科技的兴趣,培养学生良好的科学素养,某校组织学生参加航空航天科普知识答题竞赛,每位参赛学生答题若干次,答题赋分方法如下:第1次答题,答对得20分,答错得10分:从第2次答题开始,答对则获得上一次答题得分的两倍,答错得10分.学生甲参加答题竞赛,每次答对的概率为,各次答题结果互不影响.(1)求甲前3次答题得分之和为40分的概率;(2)记甲第i次答题所得分数的数学期望为.写出与满足的等量关系式(直接写出结果,不必证明):若,求i的最小值.4(2023广东湛江统考一模)某工厂一台设备生产一种特定零件,工厂为了解该设备的生产情况,随机抽检了该设备在一个生产周期中
5、的100件产品的关键指标(单位:),经统计得到下面的频率分布直方图:(1)由频率分布直方图估计抽检样本关键指标的平均数和方差(用每组的中点代表该组的均值)(2)已知这台设备正常状态下生产零件的关键指标服从正态分布,用直方图的平均数估计值作为的估计值,用直方图的标准差估计值s作为估计值(i)为了监控该设备的生产过程,每个生产周期中都要随机抽测10个零件的关键指标,如果关键指标出现了之外的零件,就认为生产过程可能出现了异常,需停止生产并检查设备下面是某个生产周期中抽测的10个零件的关键指标:0.81.20.951.011.231.121.330.971.210.83利用和判断该生产周期是否需停止生
6、产并检查设备(ii)若设备状态正常,记X表示一个生产周期内抽取的10个零件关键指标在之外的零件个数,求及X的数学期望参考公式:直方图的方差,其中为各区间的中点,为各组的频率参考数据:若随机变量X服从正态分布,则,5(2023江苏统考一模)某小区有居民2000人,想通过验血的方法筛查出乙肝病毒携带者,为此需对小区全体居民进行血液化验,假设携带病毒的居民占a%,若逐个化验需化验2000次.为减轻化验工作量,随机按n人一组进行分组,将各组n个人的血液混合在一起化验,若混合血样呈阴性,则这n个人的血样全部阴性;若混合血样呈阳性,说明其中至少有一人的血样呈阳性,就需对每个人再分别单独化验一次.假设每位居
7、民的化验结果呈阴性还是阳性相互独立.(1)若,试估算该小区化验的总次数;(2)若,每人单独化验一次花费10元,n个人混合化验一次花费元.求n为何值时,每位居民化验费用的数学期望最小.(注:当时,)6(2023江苏统考一模)人工智能是研究用于模拟和延伸人类智能的技术科学,被认为是21世纪最重要的尖端科技之一,其理论和技术正在日益成熟,应用领域也在不断扩大.人工智能背后的一个基本原理:首先确定先验概率,然后通过计算得到后验概率,使先验概率得到修正和校对,再根据后验概率做出推理和决策.基于这一基本原理,我们可以设计如下试验模型;有完全相同的甲、乙两个袋子,袋子有形状和大小完全相同的小球,其中甲袋中有
8、9个红球和1个白球乙袋中有2个红球和8个白球.从这两个袋子中选择一个袋子,再从该袋子中等可能摸出一个球,称为一次试验.若多次试验直到摸出红球,则试验结束.假设首次试验选到甲袋或乙袋的概率均为(先验概率).(1)求首次试验结束的概率;(2)在首次试验摸出白球的条件下,我们对选到甲袋或乙袋的概率(先验概率)进行调整.求选到的袋子为甲袋的概率,将首次试验摸出的白球放回原来袋子,继续进行第二次试验时有如下两种方案;方案一,从原来袋子中摸球;方案二,从另外一个袋子中摸球.请通过计算,说明选择哪个方案第二次试验结束的概率更大.7(2023辽宁沈阳统考一模)2022年12月初某省青少年乒乓球培训基地举行了混
9、双选拔赛,其决赛在韩菲/陈宇和黄政/孙艺两对组合间进行,每场比赛均能分出胜负已知本次比赛的赞助商提供了10000元奖金,并规定:若其中一对赢的场数先达到4场,则比赛终止,同时这对组合获得全部奖金;若比赛意外终止时无组合先赢4场,则按照比赛继续进行各自赢得全部奖金的概率之比给两对组合分配奖金已知每场比赛韩菲/陈宇组合赢的概率为,黄政/孙艺赢的概率为,且每场比赛相互独立(1)若在已进行的5场比赛中韩菲/陈宇组合赢3场、黄政/孙艺组合赢2场,求比赛继续进行且韩菲/陈宇组合赢得全部奖金的概率;(2)若比赛进行了5场时终止(含自然终止与意外终止),则这5场比赛中两对组合之间的比赛结果共有多少不同的情况?
10、(3)若比赛进行了5场时终止(含自然终止与意外终止),设,若赞助商按规定颁发奖金,求韩菲/陈宇组合获得奖金数X的分布列8(2023江苏二模)为促进经济发展,某地要求各商场采取多种举措鼓励消费商场在春节期间推出“你摸球,我打折”促销活动,门口设置两个盒子,甲盒内有大小相同的个红球和个黑球,乙盒内有大小相同的个红球和个黑球,购物满一定金额的顾客可以从甲、乙两个盒内各任取个球具体规则如下:摸出个红球记为一等奖,没有红球记为二等奖,个红球记为三等奖,个红球记为鼓励奖.(1)获得一、二、三等奖和鼓励奖的折扣率分别为折、折、折和折记随机变量为获得各奖次的折扣率,求随机变量的分布列及期望;(2)某一时段内有
11、人参加该促销活动,记随机变量为获得折及以下资格的人数,求9(2023辽宁哈尔滨三中校联考一模)某学校号召学生参加“每天锻炼1小时”活动,为了了解学生参与活动的情况,随机调查了100名学生一个月(30天)完成锻炼活动的天数,制成如下频数分布表:天数0,5(5,10(10,15(15,20(20,25(25,30人数4153331116(1)由频数分布表可以认为,学生参加体育锻炼天数X近似服从正态分布,其中近似为样本的平均数(每组数据取区间的中间值),且,若全校有3000名学生,求参加“每天锻炼1小时”活动超过21天的人数(精确到1);(2)调查数据表明,参加“每天锻炼1小时”活动的天数在(15,
12、30的学生中有30名男生,天数在0,15的学生中有20名男生,学校对当月参加“每天锻炼1小时”活动超过15天的学生授予“运动达人”称号.请填写下面列联表:性别活动天数合计0,15(15,30男生女生合计并依据小概率值的独立性检验,能否认为学生性别与获得“运动达人”称号有关联.如果结论是有关联,请解释它们之间如何相互影响.附:参考数据:;.0.10.050.010.0050.0012.7063.8416.6357.87910.82810(2023河北邢台校联考模拟预测)为弘扬体育精神,营造校园体育氛围,某校组织“青春杯”3V3篮球比赛,甲、乙两队进入决赛规定:先累计胜两场者为冠军,一场比赛中犯规
13、4次以上的球员在该场比赛结束后,将不能参加后面场次的比赛在规则允许的情况下,甲队中球员都会参赛,他上场与不上场甲队一场比赛获胜的概率分别为和,且每场比赛中犯规4次以上的概率为(1)求甲队第二场比赛获胜的概率;(2)用表示比赛结束时比赛场数,求的期望;(3)已知球员在第一场比赛中犯规4次以上,求甲队比赛获胜的概率11(2023河北衡水河北衡水中学校考三模)某社区对55位居民是否患有新冠肺炎疾病进行筛查,已知随机一人其口拭子核酸检测结果呈阳性的概率为2%,且每个人的口拭子核酸是否呈阳性相互独立.(1)假设该疾病患病的概率是0.3%,且患病者口拭子核酸呈阳性的概率为98%,设这55位居民中有一位的口
14、拭子核酸检测呈阳性,求该居民可以确诊为新冠肺炎患者的概率;(2)根据经验,口拭子核酸检测采用分组检测法可有效减少工作量,具体操作如下:将55位居民分成若干组,先取每组居民的口拭子核酸混在一起进行检测,若结果显示阴性,则可断定本组居民没有患病,不必再检测;若结果显示阳性,则说明本组中至少有一位居民患病,需再逐个进行检测,现有两个分组方案:方案一:将55位居民分成11组,每组5人;方案二:将55位居民分成5组,每组11人,试分析哪一个方案的工作量更少?参考数据:,.12(2023福建福州统考二模)脂肪含量(单位:%)指的是脂肪重量占人体总重量的比例某运动生理学家在对某项健身活动参与人群的脂肪含量调
15、查中,采用样本量比例分配的分层随机抽样,如果不知道样本数据,只知道抽取了男性120位,其平均数和方差分别为14和6,抽取了女性90位,其平均数和方差分别为21和17(1)试由这些数据计算出总样本的均值与方差,并对该项健身活动的全体参与者的脂肪含量的均值与方差作出估计(结果保留整数)(2)假设全体参与者的脂肪含量为随机变量X,且XN(17,2),其中2近似为(1)中计算的总样本方差现从全体参与者中随机抽取3位,求3位参与者的脂肪含量均小于12.2%的概率附:若随机变量服从正态分布N(,2),则P(-X+0.6827,P(-2X+2)0.9545,4.7,4.8,0.1586530.00413(2
16、023山东青岛统考一模)今天,中国航天仍然迈着大步向浩瀚宇宙不断探索,取得了举世瞩目的非凡成就某学校为了解学生对航天知识的知晓情况,在全校学生中开展了航天知识测试(满分100分),随机抽取了100名学生的测试成绩,按照,分组,得到如下所示的样本频率分布直方图:(1)根据频率分布直方图,估计该校学生测试成绩的中位数;(2)用样本的频率估计概率,从该校所有学生中随机抽取10名学生的成绩,用表示这10名学生中恰有k名学生的成绩在上的概率,求取最大值时对应的k的值;(3)从测试成绩在的同学中再次选拔进入复赛的选手,一共有6道题,从中随机挑选出4道题进行测试,至少答对3道题者才可以进入复赛现有甲、乙两人
17、参加选拔,在这6道题中甲能答对4道,乙能答对3道,且甲、乙两人各题是否答对相互独立记甲、乙两人中进入复赛的人数为,求的分布列及期望14(2023山东潍坊统考模拟预测)某校举行“强基计划”数学核心素养测评,要求以班级为单位参赛,最终高三一班(45人)和高三二班(30人)进入决赛决赛规则如下:现有甲、乙两个纸箱,甲箱中有4个选择题和2个填空题,乙箱中有3个选择题和3个填空题,决赛由两个环节组成,环节一:要求两班级每位同学在甲或乙两个纸箱中随机抽取两题作答,作答后放回原箱并分别统计两班级学生测评成绩的相关数据;环节二:由一班班长王刚和二班班长李明进行比赛,并分别统计两人的测评成绩的相关数据,两个环节
18、按照相关比赛规则分别累计得分,以累计得分的高低决定班级的名次(1)环节一结束后,按照分层抽样的方法从两个班级抽取20名同学,并统计每位同学答对题目的数量,统计数据为:一班抽取同学答对题目的平均数为1,方差为1;二班抽取同学答对题目的平均数为1.5,方差为0.25,求这20人答对题目的均值与方差;(2)环节二,王刚先从甲箱中依次抽取了两道题目,答题结束后将题目一起放入乙箱中,然后李明再抽取题目,已知李明从乙箱中抽取的第一题是选择题,求王刚从甲箱中取出的是两道选择题的概率15(2023山东聊城统考一模)某中学在高一学生选科时,要求每位学生先从物理和和历史这两个科目中选定一个科目,再从思想政治、地理
19、、化学、生物这四个科目中任选两个科目选科工作完成后,为了解该校高一学生的选科情况,随机抽取了部分学生作为样本,对他们的选科情况统计后得到下表:思想政治地理化学生物物理类100120200180历史类1201406080(1)利用上述样本数据填写以下列联表,并依据小概率值的独立性检验,分析以上两类学生对生物学科的选法是否存在差异科类生物学科选法选不选合计物理类历史类合计(2)假设该校高一所有学生中有的学生选择了物理类,其余的学生都选择了历史类,且在物理类的学生中其余两科选择的是地理和化学的概率为,而在历史类的学生中其余两科选择的是地理和化学的概率为若从该校高一所有学生中随机抽取100名学生,用表
20、示这100名学生中同时选择了地理和化学的人数,求随机变量的均值附:0.10.050.0010.0050.0012.7063.8416.6357.87910.82816(2023湖北武汉统考模拟预测)口袋中共有7个质地和大小均相同的小球,其中4个是黑球,现采用不放回抽取方式每次从口袋中随机抽取一个小球,直到将4个黑球全部取出时停止.(1)记总的抽取次数为X,求E(X);(2)现对方案进行调整:将这7个球分装在甲乙两个口袋中,甲袋装3个小球,其中2个是黑球;乙袋装4个小球,其中2个是黑球.采用不放回抽取方式先从甲袋每次随机抽取一个小球,当甲袋的2个黑球被全部取出后再用同样方式在乙袋中进行抽取,直到
21、将乙袋的2个黑球也全部取出后停止.记这种方案的总抽取次数为Y,求E(Y)并从实际意义解释E(Y)与(1)中的E(X)的大小关系.17(2023湖北统考模拟预测)某市举行招聘考试,共有4000人参加,分为初试和复试,初试通过后参加复试为了解考生的考试情况,随机抽取了100名考生的初试成绩,并以此为样本绘制了样本频率分布直方图,如图所示(1)根据频率分布直方图,试求样本平均数的估计值;(2)若所有考生的初试成绩X近似服从正态分布,其中为样本平均数的估计值,试估计初试成绩不低于88分的人数;(3)复试共三道题,第一题考生答对得5分,答错得0分,后两题考生每答对一道题得10分,答错得0分,答完三道题后
22、的得分之和为考生的复试成绩已知某考生进入复试,他在复试中第一题答对的概率为,后两题答对的概率均为,且每道题回答正确与否互不影响记该考生的复试成绩为Y,求Y的分布列及均值附:若随机变量X服从正态分布,则:,18(2023湖北武汉华中师大一附中校联考模拟预测)某地区区域发展指数评价指标体系基于五大发展理念构建,包括创新发展、协调发展、绿色发展、开放发展和共享发展5个一级指标该地区区域发展指数测算方法以2015年作为基期并设指数值为100,通过时序变化,观察创新发展、协调发展、绿色发展、开放发展和共享发展5个分领域指数值的变动趋势分别计算创新发展、协调发展、绿色发展、开放发展和共享发展5个分指数,然
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2023年高考数学重点专题三轮冲刺演练专题04 概率统计与期望方差分布列大题拔高练解析版 2023 年高 数学 重点 专题 三轮 冲刺 演练 04 概率 统计 期望 方差 分布 列大题 拔高 解析
链接地址:https://www.taowenge.com/p-89761708.html
限制150内