2018年广东中考数学专题训练解答题(三)(压轴题)(共18页).docx
《2018年广东中考数学专题训练解答题(三)(压轴题)(共18页).docx》由会员分享,可在线阅读,更多相关《2018年广东中考数学专题训练解答题(三)(压轴题)(共18页).docx(17页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上广东中考数学专题训练(一):代数综合题(函数题)一、命题特点与方法分析以考纲规定,“代数综合题”为数学解答题(三)中的题型,一般出现在该题组的第1题(即试卷第23题),近四年来都是对函数图像的简单考察近四年考点概况:年份考点2014一次函数、反比例函数、一元二次方程2015一次函数、反比例函数、轴对称(路径最短问题)2016一次函数、反比例函数、二次函数2017二次函数、三角函数、平行截割、一次函数由此可见,近年来23题考点范围趋向综合,命题主体可以是一次函数与反比例函数或者一次函数与二次函数,但难度基本都不太大主要的命题形式有以下3种:1求点的坐标或求直线解析式中的
2、待定系数这种题一般考查列方程解答,难度较低,在试题的前两问出现2考察图像的性质如14年第(1)问和16年第(2)(3)问,都是对函数图象的性质来设问,要求对图像性质有清晰的记忆3考查简单的几何问题考查简单的解析几何的内容,基本上出现在试题的第(3)问,一般都利用基本的模型出题,几何部分难度不会太大,可以尝试了解高中解析几何的基础知识二、例题训练1如图,在直角坐标系中,直线y=-x+5与反比例函数y=(x0)交于A(1,4)、B两点 (1)求b的值; (2)求点B的坐标; (3)直线y=3与反比例函数图像交于点C,连接AC、CB,另有直线y=m与反比例函数图像交于点D,连接AD、BD,此时ACB
3、与ADB面积相等,求m的值2如图,在直角坐标系中,直线y=x+b与反比例函数y=-(x0)交于点A( m,1)直线与x轴、y轴分别交于点B、C (1)求m的值; (2)求点B、C的坐标; (3)将直线y=x+b向上平移一个长度单位得到另一条直线,求两直线之间的距离3如图,在直角坐标系中,抛物线y=(1-m)x2+mx+m2-4经过原点且开口向下,直线y=x+b与其仅交于点A (1)求抛物线的解析式; (2)求点A的坐标;(3)求直线y=x+b关于x轴对称的直线的解析式4如图,在直角坐标系中,抛物线y=x2-3x+2与x轴交于点A、B,与y轴交于点C,连接BC (1)求点A、B和C的坐标; (2
4、)求OBC的度数;(3)将直线BC向上平移5个单位,再向左平移m个单位,得到的直线与原直线重合,求m的值三、例题解析答案:1(1)b=4; (2)(4,1); (3)m= 【考点:一次函数、反比例函数,一元二次方程】2(1)m=-1; (2)B(2,0),C(0,2); (3) 【考点:一次函数、反比例函数、相似三角形】3(1)y=-x2+2x; (2)A(,); (3)y=-x- 【考点:二次函数、一次函数、一元二次方程、轴对称】4(1)A(1,0),B(2,0),C(0,2); (2)45; (3)m=5 【考点:二次函数、一次函数、等腰三角形】解析:主要的命题形式与例题对应:1求点的坐标
5、或求直线解析式中的待定系数 【题1(1)(2),题2(1)(2),题4(1)】2考察图像的性质 【题3(1)】3考查简单的几何问题 【题1(3),题2(3),题3(3),题4(2)(3)】广东中考数学专题训练(二):几何综合题(圆题)一、命题特点与方法分析以考纲规定,“几何综合题”为数学解答题(三)中出现的题型一般出现在该题组的第2题(即试卷第24题),近四年来都是以圆为主体图形,考察几何证明近四年考点概况:年份考点2014圆的性质、全等三角形、平行四边形、圆的相关计算2015圆的性质(垂径定理)、全等三角形、平行四边形、三角函数2016圆的性质(切线)、相似三角形、三角函数2017圆的性质(
6、切线)、相似三角形、角平分线的性质、圆的相关计算、三角函数由此可见,近年来24题同样趋向综合化,相似与全等常被用来结合考察,而且图形的构造也相对复杂难度也较高(尤其是14、15年),考查学生综合多方面知识进行几何证明的能力本题除了常规的证明以外,主要的命题特点有以下两种:1改编自常考图形,有可能成为作辅助线的依据如16年的构图中包含弦切角定理的常用图,17年第(2)问则显然是“切线+垂直+半径相等”得出角平分线的考察,依此就不难判断出辅助线的构造,应该对常考图形有一定的识别能力2利用数量关系求出特殊角如15年第(1)问,17年第(3)问,这常常是容易被遗忘的点,在做这类题目的时候,首先要通过设
7、问推敲,其次在观察题干中是否有给出角度的条件,如果没有,一般就是通过数量关系求出特殊角二、例题训练1如图,O为ABC外接圆,BC为O直径,BC=4点D在O上,连接OA、CD和BD,AC与BD交于点E,并作AFBC交BD于点G,点G为BE中点,连接OG (1)求证:OACD; (2)若DBC=2DBA,求BD的长; (3)求证:FG=2如图,O为ABC外接圆,AB为O直径,AB=4O切线CD交BA延长线于点D,ACB平分线交O于点E,并以DC为边向下作DCF=CAB交O于点F,连接AF (1)求证:DCF=D+B; (2)若AF=,AD=,求线段AC的长; (3)若CE=+,求证:ABCF3如图
8、,O为ABC外接圆,BC为O直径作=,连接AD、CD和BD,AB与CD交于点E,过点B作O切线,并作点E作EFDC交切线于点G (1)求证:DAC=G+90; (2)求证:CF=GF; (3)若=,求证:AE=DE4如图,O为ABC外接圆,AB为O直径连接CO,并作ADCO交O于点D,过点D作O切线DE交CO延长线于点E,连接BE,作AFCO交BC于点G,交BE于点H,连接OG (1)若CF=2,OF=3,求AC的长; (2)求证:BE是O的切线; (3)若=,求证:OGAB三、例题解析答案:1(1)难度中等,关键是推出DBA=ACB; (2)难度中等,关键是推出DBC=45; (3)难度大,
9、OA与BD交于点H,关键是利用OG为BEC中位线推出GH=,再利用全等三角形推出FG=GH【考点:圆的性质(垂径定理)、三角函数、三角形中位线、全等三角形】2(1)难度中等,关键是推出DCA=B; (2)难度中等,关键是推出F=B,从而得出AFCACD; (3)难度大,关键是通过作下角平分线的常规辅助线得到全等三角形,通过转化边长和ACE=45的条件推出AC+BC=2+2,联立AB=4解出AC=2,BC=2,进而推出30 【考点:圆的性质、三角函数、相似三角形、全等三角形、角平分线的性质】3(1)难度低,关键是推出G=DCB; (2)难度中等,关键是推出BF=EF,再推出三角形全等; (3)难
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 广东 中考 数学 专题 训练 解答 压轴 18
限制150内