2018年广东省高考数学一模试卷(理科)(共27页).doc
《2018年广东省高考数学一模试卷(理科)(共27页).doc》由会员分享,可在线阅读,更多相关《2018年广东省高考数学一模试卷(理科)(共27页).doc(28页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上2018年广东省高考数学一模试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 已知集合A=x|11x1,B=x|x21,则AB=()Ax|1x1Bx|0x1Cx|x1Dx|0x22 设复数z=a+4i(aR),且(2i)z为纯虚数,则a=()A1B1C2D23 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()ABCD4 已知函数f(x)满足,则函数f(x)的图象在x=1处的切线斜率为()A0B9C18D275 已知
2、F是双曲线C:=1(a0,b0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A2BCD26 的展开式中,x3的系数为()A120B160C100D807 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A48+8B96+8C96+16D48+168 已知曲线,则下列结论正确的是()A把C向左平移个单位长度,得到的曲线关于原点对称B把C向右平移个单位长度,得到的曲线关于y轴对称C把C向左平移个单位长度,得到的曲线关于原点对称D把C向右平移个单位长度,得到的曲线关于y轴对称9 大衍数列,来源于乾坤谱中对易传“大衍之数五十”的推论主
3、要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()An是偶数,n100Bn是奇数,n100Cn是偶数,n100Dn是奇数,n10010 在ABC中,角A,B,C所对的边分别为a,b,c,若A=,且2bsinB+2csinC=bc+a则ABC的面积的最大值为()ABCD11
4、已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()ABCD12 设函数,若互不相等的实数a,b,c,d满足f(a)=f(b)=f(c)=f(d),则2a+2b+2c+2d的取值范围是()AB(98,146)CD(98,266)二、填空题(每题5分,满分20分,将答案填在答题纸上)13 已知单位向量,的夹角为30,则|= 14 设x,y满足约束条件,则z=x+y的最大值为 15 已知sin10+mcos10=2cos140,则m= 16 如图,圆形纸片的圆心为O,半径为6cm,该纸片上的正方形ABCD的中心为O,E,F,G,H为圆O上的点
5、,ABE,BCF,CDG,ADH分别是以AB,BC,CD,DA为底边的等腰三角形沿虚线剪开后,分别以AB,BC,CD,DA为折痕折起ABE,BCF,CDG,ADH,使得E,F,G,H重合,得到一个四棱锥当该四棱锥的侧面积是底面积的2倍时,该四棱锥的外接球的体积为 三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每道试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题:共60分.17(12.00分)已知公差不为零的等差数列an满足a1=5,且a3,a6,a11成等比数列(1)求数列an的通项公式;(2)设,求数列bn的前n项和Sn18(
6、12.00分)“微信运动”是一个类似计步数据库的公众账号用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现现随机选取朋友圈中的50人,记录了他们某一天的走路步数,并将数据整理如下:步数/步03000300160006001800080011000010000以上男生人数/人127155女性人数/人03791规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”(1)以这50人这一天行走的步数的频率代替1人一天行走的步数发生的概率,记X表示随机抽取3人中被系统评为“积极性”的人数,求P(X2)和X的
7、数学期望(2)为调查评定系统的合理性,拟从这50人中先抽取10人(男性6人,女性4人)其中男性中被系统评定为“积极性”的有4人,“懈怠性”的有2人,从中任意选取3人,记选到“积极性”的人数为x;其中女性中被系统评定为“积极性”和“懈怠性”的各有2人,从中任意选取2人,记选到“积极性”的人数为y;求xy的概率19(12.00分)如图,在直角梯形ABCD中,ADBC,ABBC,且BC=2AD=4,E,F分别为线段AB,DC的中点,沿EF把AEFD折起,使AECF,得到如下的立体图形(1)证明:平面AEFD平面EBCF;(2)若BDEC,求二面角FBDC的余弦值20(12.00分)已知椭圆的离心率为
8、,且C过点(1)求椭圆C的方程;(2)若直线l与椭圆C交于P,Q两点(点P,Q均在第一象限),l与x轴,y轴分别交于M,N两点,且满足(其中O为坐标原点)证明:直线l的斜率为定值21(12.00分)已知函数f(x)=(x2)ex+a(lnxx+1)(1)讨论f(x)的导函数f(x)零点的个数;(2)若函数f(x)的最小值为e,求a的取值范围(二)选考题:共10分.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分.选修4-4:坐标系与参数方程22(10.00分)在直角坐标系xOy中,圆C1:(x2)2+(y4)2=20,以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,C2
9、:=(1)求C1的极坐标方程和C2的平面直角坐标系方程;(2)若直线C3的极坐标方程为=,设C2与C1的交点为O、M,C3与C1的交点为O、N,求OMN的面积选修4-5:不等式选讲23已知函数f(x)=3|xa|+|3x+1|,g(x)=|4x1|x+2|(1)求不等式g(x)6的解集;(2)若存在x1,x2R,使得f(x1)和g(x2)互为相反数,求a的取值范围2018年广东省高考数学一模试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1 已知集合A=x|11x1,B=x|x21,则AB=()Ax|1x1
10、Bx|0x1Cx|x1Dx|0x2【分析】解不等式得出集合A、B,根据交集的定义写出AB【解答】解:集合A=x|11x1=x|0x2,B=x|x21=x|1x1,则AB=x|0x1故选:B【点评】本题考查了解不等式与交集的运算问题,是基础题2 设复数z=a+4i(aR),且(2i)z为纯虚数,则a=()A1B1C2D2【分析】把z=a+4i(aR)代入(2i)z,利用复数代数形式的乘法运算化简,由实部为0且虚部不为0求得a值【解答】解:z=a+4i(aR),且(2i)z=(2i)(a+4i)=(2a+4)+(8a)i为纯虚数,解得a=2故选:D【点评】本题考查复数代数形式的乘除运算,考查复数的
11、基本概念,是基础题3 如图为射击使用的靶子,靶中最小的圆的半径为1,靶中各图的半径依次加1,在靶中随机取一点,则此点取自黑色部分(7环到9环)的概率是()ABCD【分析】根据几何概型的定义分别求出满足条件的面积,作商即可【解答】解:由题意此点取自黑色部分的概率是:P=,故选:A【点评】本题主要考查几何概型的概率计算,求出黑色阴影部分的面积是解决本题的关键4 已知函数f(x)满足,则函数f(x)的图象在x=1处的切线斜率为()A0B9C18D27【分析】根据题意,分析可得函数的解析式,求出其导数f(x)=24x26,计算可得f(1)的值,结合导数的几何意义分析可得答案【解答】解:根据题意,函数f
12、(x)满足,则f(x)=8x36x,其导数f(x)=24x26,则有f(1)=246=18,即函数f(x)的图象在x=1处的切线斜率为18;故选:C【点评】本题考查利用导数求函数切线的方程,注意先求出函数的解析式5 已知F是双曲线C:=1(a0,b0)的一个焦点,点F到C的一条渐近线的距离为2a,则双曲线C的离心率为()A2BCD2【分析】根据题意,由双曲线的几何性质,分析可得b=2a,进而可得c=a,由双曲线的离心率公式计算可得答案【解答】解:根据题意,F是双曲线C:=1(a0,b0)的一个焦点,若点F到C的一条渐近线的距离为2a,则b=2a,则c=a,则双曲线C的离心率e=,故选:C【点评
13、】本题考查双曲线的几何性质,注意双曲线的焦点到渐近线的距离为b6 的展开式中,x3的系数为()A120B160C100D80【分析】利用多项式乘以多项式展开,然后分别求出两项中含有x3的项得答案【解答】解:=,x(1+2x)5的展开式中含x3的项为,的展开式中含x3的项为的展开式中,x3的系数为40+80=120故选:A【点评】本题考查二项式系数的性质,关键是熟记二项展开式的通项,是基础题7 如图,网格纸上的小正方形的边长为1,粗线画出的是某几何体的三视图,则该几何体的表面积为()A48+8B96+8C96+16D48+16【分析】由三视图可得,该几何体是长方体截去两个半圆柱,即可求解表面积【
14、解答】解:由题意,该几何体是长方体截去两个半圆柱,表面积为:462+2(464)+224=96+8,故选:B【点评】本题考查了圆柱和长方体的三视图,结构特征,面积计算,属于基础题8 已知曲线,则下列结论正确的是()A把C向左平移个单位长度,得到的曲线关于原点对称B把C向右平移个单位长度,得到的曲线关于y轴对称C把C向左平移个单位长度,得到的曲线关于原点对称D把C向右平移个单位长度,得到的曲线关于y轴对称【分析】直接利用三角函数的图象平移逐一核对四个选项得答案【解答】解:把C向左平移个单位长度,可得函数解析式为y=sin2(x+)=sin(2x+)=cos2x,得到的曲线关于y轴对称,故A错误;
15、把C向右平移个单位长度,可得函数解析式为y=sin2(x)=sin(2x)=cos2x,得到的曲线关于y轴对称,故B正确;把C向左平移个单位长度,可得函数解析式为y=sin2(x+)=sin(2x+),取x=0,得y=,得到的曲线既不关于原点对称也不关于y轴对称,故C错误;把C向右平移个单位长度,可得函数解析式为y=sin2(x)=sin(2x),取x=0,得y=,得到的曲线既不关于原点对称也不关于y轴对称,故D错误正确的结论是B故选:B【点评】本题考查y=Asin(x+)型函数的图象变换,考查y=Asin(x+)的图象和性质,是基础题9 大衍数列,来源于乾坤谱中对易传“大衍之数五十”的推论主
16、要用于解释中国传统文化中的太极衍生原理数列中的每一项,都代表太极衍生过程中,曾经经历过的两仪数量总和,是中华传统文化中隐藏着的世界数学史上第一道数列题其规律是:偶数项是序号平方再除以2,奇数项是序号平方减1再除以2,其前10项依次是0,2,4,8,12,18,24,32,40,50,如图所示的程序框图是为了得到大衍数列的前100项而设计的,那么在两个“”中,可以先后填入()An是偶数,n100Bn是奇数,n100Cn是偶数,n100Dn是奇数,n100【分析】模拟程序的运行过程,结合退出循环的条件,判断即可【解答】解:n=1,s=0,n=2,s=2,n=3,s=4,n=99,s=,n=100,
17、s=,n=101100,结束循环,故选:D【点评】本题考查了程序框图的应用问题,解题时应模拟程序框图的运行过程,以便得出正确的结论,是基础题10 在ABC中,角A,B,C所对的边分别为a,b,c,若A=,且2bsinB+2csinC=bc+a则ABC的面积的最大值为()ABCD【分析】由正弦定理和余弦定理即可求出a=,再由余弦定理可得:b2+c2=3+bc,利用基本不等式可求bc3,根据三角形面积公式即可得解【解答】解:根据正弦定理可得=,sinB=,sinC=,2bsinB+2csinC=bc+a,+=bc+a,b2+c2=abc+a2,b2+c2a2=abc,=cosA=a=,3=b2+c
18、2bc,可得:b2+c2=3+bc,b2+c22bc(当且仅当b=c时,等号成立),2bc3+bc,解得bc3,SABC=bcsinA=bc故选:C【点评】本题主要考查了余弦定理,基本不等式,三角形面积公式在解三角形中的综合应用,考查了转化思想和计算能力,属于中档题11 已知抛物线C:y2=x,M为x轴负半轴上的动点,MA,MB为抛物线的切线,A,B分别为切点,则的最小值为()ABCD【分析】设切线MA的方程为x=ty+m,代入抛物线方程得y2tym=0,由直线与抛物线相切可得=t2+4m=0,分别求出A,B,M的坐标,根据向量的数量积和二次函数的性质即可求出【解答】解:设切线MA的方程为x=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 广东省 高考 数学 试卷 理科 27
限制150内