本科毕业设计论文--经典一维装箱问题的适应近似算法的研究.doc
《本科毕业设计论文--经典一维装箱问题的适应近似算法的研究.doc》由会员分享,可在线阅读,更多相关《本科毕业设计论文--经典一维装箱问题的适应近似算法的研究.doc(14页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 经典一维装箱问题的适应近似算法的研究经典一维装箱问题的适应近似算法的研究摘 要本文研究经典一维装箱问题(Bin Packing Problem)及其适应近似算法,给出了一个新的适应近似算法:交叉装填算法(简称CF算法),而且证明了当这些物件大小按非增性预先排序后,CF算法时间复杂度是线性的;通过具体例子说明交叉装填算法优于其它适应近似算法,并且推断CF算法达到装箱问题的最好近似值。关键词:一维装箱问题,近似算法,适应算法,交叉装填算法 ABSTRACT In this paper the Bin-Packing problems and any-fit approximation algor
2、ithm are studied. We give a new any-fit approximation algorithm (Cross Fit Approximation Algorithm) in steps. In addition, if the sizes of all objects decreasing according to their sizes, The any-fit approximation algorithm runs in steps. This paper proved the cross fit approximation algorithms capa
3、bility excelled other any-fit approximation algorithms by some example,and extrapolate the new any-fit algorithm is a approximation algorithm. Key Words:Pin Packing Problem,Approximation Algorithm,Any-fit Algorithm, Cross Any-fit Algorithm.1 引言11 问题的提出装箱问题也就是把一定数量的物品放入容量相同的一些箱子中,使得每个箱子中的物品体积之和不超过箱子容
4、量并使所用的箱子数目最少。其应用在实际生活中无处不在,货物装运,服装裁剪,以及计算机科学中的存储分配、共享资源调度、文件存储都是装箱问题在实际应用中的体现。例如某国际物流公司有一批固体货物要装进集装箱用船从广州运到美国。每个集装箱的规格都一样(体积均为150立方米),而每件货物体积不一定相同但其长宽高都小于集装箱的。问怎样的装箱方案最省钱,即所用集装箱最少?研究装箱问题能够更好解决上述这些问题,有很大的经济效益。所以装箱问题有着广泛的应用背景,具有很大的研究价值。但是装箱问题是NP难解问题7,这意味着该问题不存在在多项式时间内求得精确解的算法(如果PNP)因此对装箱问题算法的研究指的是对其近似
5、算法的研究,所谓近似算法即该算法可以求得与精确解接近的结果但不一定得到精确解。目前,已经提出了大量的近似算法,其中适应近似算法是目前时间复杂性比较低的一种近似算法。如下次适应(NF)算法、首次适应(FF)算法、最佳适应(BF)算法、降序首次适应(FFD)算法、降序最佳适应(BFD)算法等。装箱问题中最早被研究的是一维装箱问题。随着研究的深入,人们发现实际生活中更多存在的是一些带约束的装箱问题,因此也就抽象化出了,如二维装箱问题(条形装箱问题、剪裁问题)、三维装箱问题、变容装箱问题、有色装箱问题、对偶装箱问题等等一系列的带约束的装箱问题。但是由于这些问题的NP困难性,虽然已经有一些研究成果,但是
6、还有很许多未解问题,甚至一些是一维装箱问题5。一维装箱问题是指要求把一些物品放入到具有固定容量的箱子中,并最小化所使用的箱子数目。本文所讨论的是一维装箱问题。12 相关知识在研究一维装箱问题的适应近似算法之前,我们先来了解一下一些相关的知识。 121近似算法的定义一个组合最优化问题是一个最小化或最大化的问题,由三部分组成:实例的集合;I,有一个有限的可行解集合;有一个目标函数,使得I及,赋予一个正有理数(I, ),称为的目标值.对于最小(大)化问题,称为I的最优值是指,恒有最优解的目标值成为I的最优值,记作,当这个问题明确时通常省略下标.定义1 称算法是的一个近似算法(Approximatio
7、n Algorithm)是指: I,应用算法总可以找出I的一个可行解.对应的解的目标值记作,表示由算法A得到的I的目标值.若I,都有=,则称A是的最优算法(Optimization Algorithm)。122适应算法定义2 适应算法(Any Fit Algorithm):适应算法是解装箱问题的一个近似算法。当处理当前物品,如果有已经打开的箱子中能够放下这个物品,则不打开新的箱子,符合该条件的算法被称为适应算法。其中下次适应算法、首次适应算法、最佳适应算法、最坏适应算法和几乎最坏适应算法是几个著名的适应算法。适应算法的最坏情况性能比被证明一定处于1.7,2范围内,即在最坏情况性能上不可能优于首
8、次适应算法2。123经典一维装箱问题在经典一维装箱问题中,处理对象是n个输入物品的序列和一个无限多的等容量箱子序列;目标是把所有物品放入箱子中并最小化所使用的箱子数目。可以对其做如下定义:经典一维装箱问题:给定n个物品的序列Ln=(a1,a2,an),物品ai(1in)的大小s(ai) (0,1,要求将这些物品装入最小数量的单位容量的箱子中。例如,把ai(1in)分别放入箱子序列B1,B2,Bm中,使得每个箱子中的物品大小之和不超过1,即 s(ai)1,1jm,且使所用的箱子数目m最小。2 经典一维装箱问题的适应近似算法近似算法并不保证给出最优解,那么应当如何来评价近似算法的好坏呢?主要基于两
9、个方面的考虑.首先是时间复杂性方面的要求,即要求有一个多项式时间界;其次是性能方面的要求,即希望所求得的近似解尽可能地“接近”最优解.可以从不同的角度来评价近似算法性能,大体可以分为三类:第一类是以算法在最坏情况下的行为标准,研究算法得到最优解的接近程度,越接近越好;第二类是以算法的平均行为为标准研究得到最优解的概率;第三类是局部搜索算法,寻找局部最优解,这种算法有时很好,有时很坏,只能通过实践加以评定。本文所讨论的是第一种类型。为了更好地从性能方面来讨论近似算法,我们给出度量近似算法性能的两个指标。设是一个最小(大)化问题,I是的实例。设A是的一个近似算法,由A得到的目标值为A(I),而I的
10、最优目标值为OPT(I),记 (), 定义3 的近似算法A的绝对性能比(absolute performance ratio)记为 , 定义4 的近似算法A的渐近性能比(asymptotic performance ratio)记为 ,其中。 又称为近似算法A的近似值。 我们分析装箱问题的近似算法的性能包括两个主要内容2: (1)建立近似算法在最坏情况下所得目标值的一个界; (2)构造实例说明得到的界可以达到或渐近达到,从而说明这个界已经相当好了。首先我们用下面的经典结果说明一维装箱求解的困难程度。引理11 如果,那么对于任意给定的,不存在近似值为的近似算法来解决一维装箱问题。 因此这个近似值
11、是我们对一维装箱问题的近似算法的最好期待,事实上,很多近似算法的近似值都是朝这个目标迈进3。本文给出的算法也是朝这个目标前进。21已知的常用适应近似算法234211 NF(Next Fit)近似算法该算法的做法是随到随装,装不下就封箱运走.将n个物品依次装箱,设已装入箱,且即不能装入箱,则箱虽未装满也装箱送走, 装入下一个箱子,这种装箱方法适合流水作业,其时间复杂性为O(n)。定理12 对装箱问题的何实例I,均有 (2.1)例1 设物品集,各物品得体积为 对这个实例I,易知OPT(I)m+1,而NF(I)2m,从而 由定理1和例1,我们有推论22 . (2.2)212 FF(First Fit
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 本科 毕业设计 论文 经典 装箱 问题 适应 近似 算法 研究
限制150内