圆总复习教案含复习资料教师.doc
《圆总复习教案含复习资料教师.doc》由会员分享,可在线阅读,更多相关《圆总复习教案含复习资料教师.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优质文本?圆?知识点复习一、圆的概念集合形式的概念: 1、 圆可以看作是到定点的距离等于定长的点的集合; 2、圆的外部:可以看作是到定点的距离大于定长的点的集合; 3、圆的内部:可以看作是到定点的距离小于定长的点的集合轨迹形式的概念:1、圆:到定点的距离等于定长的点的轨迹就是以定点为圆心,定长为半径的圆;补充2、垂直平分线:到线段两端距离相等的点的轨迹是这条线段的垂直平分线也叫中垂线; 3、角的平分线:到角两边距离相等的点的轨迹是这个角的平分线; 4、到直线的距离相等的点的轨迹是:平行于这条直线且到这条直线的距离等于定长的两条直线; 5、到两条平行线距离相等的点的轨迹是:平行于这两条平行线且到
2、两条直线距离都相等的一条直线。二、点与圆的位置关系1、点在圆内 点在圆内;2、点在圆上 点在圆上;3、点在圆外 点在圆外;三、直线与圆的位置关系1、直线与圆相离 无交点;2、直线与圆相切 有一个交点;3、直线与圆相交 有两个交点;四、圆与圆的位置关系外离图1 无交点 ;外切图2 有一个交点 ;相交图3 有两个交点 ;内切图4 有一个交点 ;内含图5 无交点 ; 五、垂径定理垂径定理:垂直于弦的直径平分弦且平分弦所对的弧。推论1:1平分弦不是直径的直径垂直于弦,并且平分弦所对的两条弧; 2弦的垂直平分线经过圆心,并且平分弦所对的两条弧; 3平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另
3、一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: 是直径 弧弧 弧弧中任意2个条件推出其他3个结论。推论2:圆的两条平行弦所夹的弧相等。 即:在中, 弧弧六、圆心角定理圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中,只要知道其中的1个相等,那么可以推出其它的3个结论,即:; 弧弧七、圆周角定理1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。即:和是弧所对的圆心角和圆周角 2、圆周角定理的推论:推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所
4、对的弧是等弧;即:在中,、都是所对的圆周角 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。即:在中,是直径 或 是直径推论3:假设三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。即:在中, 是直角三角形或注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。八、圆内接四边形圆的内接四边形定理:圆的内接四边形的对角互补,外角等于它的内对角。 即:在中, 四边形是内接四边形 九、切线的性质与判定定理1切线的判定定理:过半径外端且垂直于半径的直线是切线; 两个条件:过半径外端且垂直半径,二者缺一不可 即:且过半径外
5、端 是的切线2性质定理:切线垂直于过切点的半径如上图 推论1:过圆心垂直于切线的直线必过切点。 推论2:过切点垂直于切线的直线必过圆心。以上三个定理及推论也称二推一定理:即:过圆心;过切点;垂直切线,三个条件中知道其中两个条件就能推出最后一个。十、切线长定理切线长定理: 从圆外一点引圆的两条切线,它们的切线长相等,这点和圆心的连线平分两条切线的夹角。即:、是的两条切线 平分十一、圆幂定理1相交弦定理:圆内两弦相交,交点分得的两条线段的乘积相等。即:在中,弦、相交于点, 2推论:如果弦与直径垂直相交,那么弦的一半是它分直径所成的两条线段的比例中项。即:在中,直径, 3切割线定理:从圆外一点引圆的
6、切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项。即:在中,是切线,是割线 4割线定理:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等如上图。即:在中,、是割线 十二、两圆公共弦定理圆公共弦定理:两圆圆心的连线垂直并且平分这两个圆的的公共弦。如图:垂直平分。即:、相交于、两点 垂直平分十三、圆的公切线两圆公切线长的计算公式:1公切线长:中,;2外公切线长:是半径之差; 内公切线长:是半径之和 。十四、圆内正多边形的计算1正三角形 在中是正三角形,有关计算在中进行:;2正四边形同理,四边形的有关计算在中进行,;3正六边形同理,六边形的有关计算在中进行,.十五
7、、扇形、圆柱和圆锥的相关计算公式1、扇形:1弧长公式:;2扇形面积公式: :圆心角 :扇形多对应的圆的半径 :扇形弧长 :扇形面积2、圆柱: 1圆柱侧面展开图 =2圆柱的体积:2圆锥侧面展开图1=2圆锥的体积:十六、知识框图: 【典型例题】 例1. 爆破时,导火索燃烧的速度是每秒0.9cm,点导火索的人需要跑到离爆破点120m以外的平安区域。这个导火索的长度为18cm,那么点导火索的人每秒钟跑6.5m是否平安? 分析:爆破时的平安区域是以爆破点为圆心,以120m为半径的圆的外部,如下列图: 解: 点导火索的人非常平安例2. 梯形ABCD内接于O,ABCD,O的半径为4,AB6,CD2,求梯形A
8、BCD的面积。 分析:要求梯形面积必须先求梯形的高,即弦AB、CD间距离,为此要构造直角三角形利用勾股定理求高。为了便于运用垂径定理,故作OECD于E,延长EO交AB于F,证OFAB。 此题容易出现丢解的情况,要注意分情况讨论。 解:分两种情况讨论: 1当弦AB、CD分别在圆心O的两侧时,如图1: 过O作OECD于E,延长EO交AB于F 连OC、OB,那么CEDE ABCD,OECD OFAB,即EF为梯形ABCD的高 在RtOEC中,EC1,OC4 2当弦AB、CD在圆心O的同侧时,如图2: 过O作OECD于E,交AB于F 以下证法同1,略。 ?圆?练习一、填空题1、O1和O2的半径分别为2
9、和3,两圆相交于点A、B,且AB2,那么O1O2_ 2、四边形ABCD是O的外切等腰梯形,其周长为20,那么梯形的中位线长为_3、如图,在ABC中,ABAC,C72,O过A、B两点,且与BC切于点B,与AC交于D,连结BD,假设BC1,那么AC_4、用铁皮制造一个圆柱形的油桶,上面有盖,它的高为80厘米,底面圆的直径为50厘米,那么这个油桶需要铁皮不计接缝 厘米2不取近似值5、两圆的半径分别为3和7,圆心距为5,那么这两个圆的公切线有_条6、如图,以AB为直径的O与直线CD相切于点E,且ACCD,BDCD,AC8 cm,BD2 cm,那么四边形ACDB的面积为_7、如图,PA、PB、DE分别切
10、O于A、B、C,O的半径长为6 cm,PO10 cm,那么PDE的周长是_图中知,CMR8,MDR8,8、一个正方形和一个正六边形的外接圆半径相等,那么此正方形与正六边形的面积之比为_9、如图,PA与圆相切于点A,过点P的割线与弦AC交于点B,与圆相交于点D、E,且PAPBBC,又PD4,DE21,那么AB_二、选择题10、有4个命题:直径相等的两个圆是等圆;长度相等的两条弧是等弧;圆中最大的弧是过圆心的弧;一条弦把圆分为两条弧,这两条弧不可能是等弧其中真命题是 A B C D11、如图,点I为ABC的内心,点O为ABC的外心,O140,那么I为 A140 B125 C130 D11012、如
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 复习 教案 复习资料 教师
限制150内