《7年级数学下册《相交线与平行线》教案.doc》由会员分享,可在线阅读,更多相关《7年级数学下册《相交线与平行线》教案.doc(13页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、优质文本 七年级数学下册?相交线与平行线?教案教案要做的充分仔细才能更好的给学生们上课。下面是的为大家整理的“七年级数学下册?相交线与平行线?教案,仅供参考,希望对大家有帮助,欢迎阅读!更多内容请关注!七年级数学下册?相交线与平行线?教案一、 学生起点分析学生的知识技能根底:学生在小学已经认识了平行线、相交线、角;在七年级上册中,已经对角及其分类有了一定的认识。这些知识储藏为本节课的学习奠定了良好的根底,使学生具备了掌握本节知识的根本技能。学生活动经验根底:在前面知识的学习过程中,教师为学生提供了广阔的可供探讨和交流的空间,学生已经经历了一些动手操作,探索发现的数学活动,积累了初步的数学活动经
2、验,具备了一定的图形认识能力和借助图形分析问题解决问题的能力;能够将直观与简单推理相结合;在合作探究的过程中,学生在以前的数学学习中学生已经经历了小组合作的学习过程,积累了大量的方法和经验,具备了一定的合作与交流能力。二、教学任务分析针对七年级学生的学情,本节从学生熟悉的、感兴趣的情境出发,引导学生自主提炼归纳出同一平面内两直线的位置关系,了解补角、余角、对顶角的概念及其性质并能够进行简单的应用;通过“让学生经历观察、操作、推理、想象等探索过程 ,开展学生的空间观念及推理能力;能从实际情境中抽象出数学模型,为后续学习“空间与图形这一数学领域而打下坚实的根底;激发学生从数学的角度认识现实,能够敏
3、锐的发现问题、提出问题,并运用所掌握的数学知识初步解决问题;引导学生在思考、交流、表达的根底上逐步达成有关情感与态度目标. 本节内容在教材中处于非常重要的地位,起着承前启后的作用。因此,本节课的目标是:1知识与技能:在具体情境中了解相交线、平行线、补角、余角、对顶角的定义,知道同角或等角的余角相等、同角或等角的补角相等、对顶角相等,并能解决一些实际问题。2过程与方法:经历操作、观察、猜想、交流、推理等获取信息的过程,进一步开展空间观念、推理能力和有条理表达的能力。3情感与态度:激发学生学习数学的兴趣,认识到现实生活中蕴含着大量的数量和图形的有关问题,这些问题可以抽象成数学问题,用数学方法予以解
4、决。三、教学过程设计本课时我遵循“开放的原那么,重组教材,恰当地创设情境,以问题串的方式激发学生的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题;通过动手操作、合作交流等方式,为学生构建了有效开放的学习环境。本节课共设计以下环节:第一环节:走进生活,引入课题;第二环节:动手实践、探究新知;第三环节:学以致用,步步为营;第四环节: 拓展延伸,综合应用;第五环节:学有所思,反响稳固; 第六环节:布置作业,能力延伸。第一环节 走进生活 引入课题活动内容一:两条直线的位置关系1请同学们自学第一节,提前两天搜集有关“两条直线的位置关系的图片,提炼出数学图形,进行归类,然后小组合作
5、交流。2教师提前一天进行筛选,捕捉出有代表性的答案,课堂上由学生本人主讲,最后概括出有关结论。稳固练习:结论:1.一般地,在同一平面内,两条直线的位置关系有两种: 和 .2.定义分别为: 。问题1:在1中,直线m和n 的关系是 ;a和b是 ;a和n是 。问题2:在2,12和3中你能提出哪些问题?活动目的:独立思考、学会思考是创新的核心。数学来源于生活,通过课前开放,引导学生从身边熟悉的图形出发,体会数学与生活的联系,总结出同一平面内两条直线的根本位置关系,体会本章内容的重要性和在生活中的广泛应用,为引入新课做好准备。通过亲身经历提炼有关数学信息的过程,可以让学生在直观有趣的问题情境中学到有价值
6、的数学。充分利用现代化教学手段加强直观教学,引起学生学习的兴趣:通过师生互动,生生互动,增加学生之间的凝聚力,在相互探讨中激发学生学习积极性,提高学课堂效率。活动本卷须知:在实际教学中可让学生自由搜寻,课堂上让学生充分发表自己的见解,清晰的表达自己的想法。学生搜集的信息是丰富多彩的,教师应注意捕捉有效信息,从鼓励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对图1中,如果有学生提出a和m有何位置关系,教师可以鼓励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。如果学生的作品中已经包含了“稳固练习的内容,教师应恰当取舍。第二环
7、节 动手实践 探究新知结合图形完成教科书的问题。动手实践二补角定义:一般地,如果两个角的和是180,那么称这两个角互为补角余角定义:如果两个角的和是90,那么称这两个角互为余角complementary angle活动目的:通过动手画图,可以加深学生对概念的理解,在相互交流中,初步形成评价与反思的意识,在相互补充、相互学习中,体验“互补互余仅仅说明了两个角的度量关系,并没有限制角的位置关系;在合作共赢中,获得成功的乐趣,锻炼克服困难的意志,建立自信心,可以更好地掌握新知识。活动本卷须知:教师首先应关注全体学生是否积极思考?是否进行有效讨论?在巡视中,还应关注学生的画图是否符合要求,要及时收集学
8、生一些好的画法进行展示,关注学习上稍微落后的学生,提前给予点拨,在集体展示时给这局部同学展示的时机,可以极大的调动这局部同学的学习热情!稳固反响:问题1:小组合作,每人编一道有关余角或者补角的题目,其余同学抢答,组长记录、整理各种题型,练习2分钟。教师巡视,给予评价,捕捉好资源。问题2:教师将捕捉到的好资源用投影仪集体展示,全班抢答,及时给予评价。问题3:以下说法中,正确的有 。填序号 A=40?,那么A的余角=500假设1+2=90?,那么1和2互为余角。假设1+2+3=180?,那么1、2和3互为补角。假设A=40?26,那么A的补角=139?34一个角的补角必为钝角。一个锐角的补角比这个
9、角的余角大900活动目的:据学生活泼好动、争强好胜的心理,设置问题1和问题2可以更好地激发学生的参与意识,在竞争中加深对概念的理解,提升所编题的质量,促进合作交流的意识。问题3是针对学生易错题而改编的一组判断题,这种形式能引导学生逐步加深对余角、补角的概念及其性质的理解和掌握。活动本卷须知:学生在编题的过程中,教师一定要仔细聆听每组的发言,对每组的表现予以点拨和鼓励,注意收集出色的资源及学生出错的信息,教师还应关注学生已经掌握了什么?具备了什么能力?还存在哪些缺乏? 展示时给予合理的评价和强调。动手实践三打台球时,选择适当的方向,用白球击打红球,反弹后的红球会直接入袋,此时1=2,将图7抽象成
10、图8,ON与DC交于点O,DON=CON=900,1=27小组合作交流,解决以下问题:在图8中问题1:哪些角互为补角?哪些角互为余角?问题2:3与4有什么关系?为什么?问题3:AOC与BOD有什么关系?为什么?你还能得到哪些结论?活动目的:概括归纳得到猜想和规律,并加以验证,是创新的重要方法。通过生动有趣的活动情景,为学生提供了观察、操作、推理、交流等丰富的数学活动,使学生在自主学习的过程中,掌握“同角或者等角的补角相等。“同角或者等角的余角相等。并能够用自己的语言说出简单推理。同时发散学生思维,让学生尽可能用多种方法来说明自己猜想的正确性,培养学生合情说理的能力。并在这个过程中,培养学生抽象
11、几何图形进行建模的能力。本着面向全体的原那么,从学生生活经验和熟悉的背景知识出发,通过创设情境串-问题串,极大的调动全体学生的参与意识,充分挖掘他们的潜能,给学生一个充分展示的舞台,以到达人人都能学好数学的目标!活动本卷须知: 学生应有足够的时间和空间经历观察、猜想、推理、验证等活动过程。本环节的三个问题是环环紧扣、层层递进提出来的,前一个问题为下一个问题作好铺垫。在学习的过程中,时刻不能忘记学生是主体,一切教学活动都应当从学生已有的认知角度出发,问题环节设计跨越性不能太强,让学生在不断的探索过程中得到不同程度的感悟,自己能够主动地去探究问题的实质,体验成功的喜悦;教师要充分发散学生的思维,鼓
12、励学生各抒己见,敢于质疑;上课要渗透合情说理的方法,进一步培养学生的推理能力。第三环节 学以致用,步步为营问题1:.因为1+2=90?,2+3=90?,所以1= ,理由是 . 因为1+2=180?,2+3=180?,所以1= ,理由是 .问题2:用你手中的三角板,画一个直角三角形,如图A是B的 。变式训练: 在的根底上,做CDA=900。如图10.1. 那么A的余角有哪几个?为什么?2. 请找出互补的角,并说明理由。3. 你还能提出哪些问题?试试看吧!活动目的:通过一题多变,可以引导学生透过现象看本质、通过本质找规律、通过规律找方法。重视动手操作,是开展学生思维,培养学生数学能力最有效途径之一
13、。通过亲自画图,可以直观的发现有关结论,它有利于让学生参与知识的形成过程,促进对抽象数学的理解,为问题的顺利解决而奠定根底。变式训练题的设置更能激发学生的兴趣,在超级变变变中体验数学的美,学会从不同的角度看待问题。活动本卷须知: 学生可能会认为概念和性质不难理解,但认识中却存在不清晰的地方。此处应给学生充分的讨论与思考的时间,可以分组讨论合作,也可以现场辩论,充分发挥学生的作用,让他们之间思维互相碰撞,在争论中发现问题要比盲目的接受知识更有意义,特别是学生之间通过合作学来的知识更能在脑海中留下深刻的印象。第四环节 拓展延伸,综合应用问题1:直线AB与CD交于点O, EOD=900,答复以下问题
14、:1. AOE的余角是 ;补角是 。2. AOC的余角是 ;补角是 ;对顶角是 。问题2:点O在直线AB上,DOC和BOE都等于900.请找出图中互余的角、互补的角、相等的角,并说明理由。先独立探究,再小组交流。活动目的:通过问题串的巧妙设置,不仅高效率的复习了本节的知识点,而且让学生在开放的环境中畅所欲言,收获了一份自信!问题串的设置提高了学生的探索意识和创新意识的形成,激发了学生的学习兴趣和探究欲。活动的本卷须知:鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,对出现的错误,一定进行积极的辨析,让学生学会解决的方法。第五环节 学有所思 反响稳固归纳总结:1. 你学到了哪些
15、知识点?2. 你学到了哪些方法?3. 你还有哪些困惑?活动目的:本环节的设置使学生学会从系统的角度把握知识方法,努力使知识结构化、络化,引导学生时刻注意新旧知识之间的联系;鼓励学生畅谈自己学习的知识和体会,激发学生对数学的学习兴趣与信心,培养学生单独梳理知识,归纳学习方法及解题方法的能力。锻炼学生组织语言及表达能力,经历与同伴分享成果的快乐过程。活动本卷须知:教师一定让学生畅谈自己的切身感受,对于知识点的整合,更要有所思考,到达对所学知识稳固的目的。鼓励其他学生进行补充纠正,教师也应进行适时的点拨和强调。稳固反响1. 如图,直线AB与CD交于点O,BOC=900,EF经过点O.1指出图中所有的
16、对顶角;2图中那些角与AOE互余?互补?3假设BOF=34,试求出AOF,BOE,DOE的度数.14,点O在直线AB上,OC平分BOD,OE平分AOD,请找出COD的余角和补角,并说明理由。3.学以致用: 如图15:小颖想测量一堵拐角高墙在底面上所成的角AOB度数,人不能进入围墙内,你能帮小颖想出简单的测量方法吗?请简述你的方法。活动目的:稳固本节课的知识点,检验学生的掌握程度。活动本卷须知:要及时反响,关注学生易错点,及时进行强调稳固。第六环节 布置作业 能力延伸根底题:1书P42页习题 第 1,2,3,4,5题提高题:2.以下列图由两块相同的直角三角板拼成,其中FDE=AOB=900,点O
17、在FD上,DE在直线AB上, 请找出相等的角、互余的角、互补的角。活动目的:作业应该表达出课堂学习的延续性,因此本节课我也精心设计了一道探究性的题目,实现了同一图形经过不同变化可以产生不同问题,与课堂的问题相照应;作业分层,可以让不同程度的学生都能有不同的收获。活动本卷须知:首先应鼓励学生独立完成作业,其次注意提高效率,最后应鼓励学生进行反思。四、教学设计反思:1. 开放课堂 激发潜能数学来源于生活,反之又效劳于生活。本课时我遵循“开放的原那么,引导学生从身边熟悉的情境出发,使学生经历从现实生活中抽象出数学模型的过程,体会本节课的重要性和在生活中的广泛应用;通过课堂开放,可以让学生在直观有趣的
18、问题情境中学到有价值的数学;学生搜集的信息是丰富多彩的,有利于教师给学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发了学生的潜能,使学生成为课堂的主人,提高了学生分析问题解决问题的能力!2动手操作 探究新知“几何直觉是增进数学理解力的很有效的途径,而且它可以使人增加勇气,提高修养。通过动手画图,可以加深学生对知识的理解,这也是促使学生认真审题的重要方法。学生的画法千变万化,他们在相互交流中,很容易发现自己的问题,起到相互补充,相互学习的效果,可以轻而易举地掌握新知识。3巧设问题串 打造高效课堂我在教材提供的教学素材的根底上,重组教材,恰当地创设情境,以问题串的方式激发学生
19、的好奇心和求知欲,通过独立思考,不断提出问题分析问题,并创造性地解决问题,通过动手操作、合作交流等方式,为学生构建了开放有效的学习环境。变式训练、一题多解的设置,题目由易到难,由简到繁,争取能让每一位学生都能领略到成功的喜悦!使学生思维分层递进,揭示概念的实质,不断完善新的知识结构,同时体验了知识的形成过程和发现的快乐,继而转化为进一步探索的内驱力;鼓励学生从多角度思考问题,充分激发学生的创新能力,使学生的思维多向开花,极大的调动学生学习数学的热情!4.本卷须知。课堂上让学生充分发表自己的见解。学生搜集的信息是丰富多彩的,学生的思维也是百花齐放,教师应注意捕捉有效信息,从鼓励学生的角度出发,给予学生一个充分展示自我的舞台,在活动中提高学生与他人合作交流的能力,激发学生的学习兴趣。针对不同的问题,应大胆放手给学生,注意培养学生抽象几何图形的能力,简单合情说理的能力,观察分析的能力,总结归纳的能力等。讨论时,应该留给学生充分的独立思考的时间,不要让一些思维活泼的学生的答复代替了其他学生的思考,掩盖了其他学生的疑问。教师应注重学生几何语言的培养,对课堂生成的问题,应予以重视,教师可以鼓励学生课后继续探究,将课内学习延伸到课外,开阔学生的视野。
限制150内