2018七年级数学下册全部知识点归纳.doc
《2018七年级数学下册全部知识点归纳.doc》由会员分享,可在线阅读,更多相关《2018七年级数学下册全部知识点归纳.doc(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档第一章:整式的运算单项式 整 式多项式整式的运算同底数幂的乘法幂的乘方积的乘方 幂运算同底数幂的除法零指数幂负指数幂整式的加减单项式与单项式相乘单项式与多项式相乘整式的乘法多项式与多项式相乘整式运算平方差公式完全平方公式单项式除以单项式整式的除法多项式除以单项式一、单项式1、都是数字与字母的乘积的代数式叫做单项式。2、单项式的数字因数叫做单项式的系数。3、单项式中所有字母的指数和叫做单项式的次数。4、单独一个数或一个字母也是单项式。5、只含有字母因式的单项式的系数是1或1。6、单独的一个数字是单项式,它的系数是它本身。7、单独的一个非零常数的次数是0。8、单项式中只能含有乘法或乘方运算
2、,而不能含有加、减等其他运算。9、单项式的系数包括它前面的符号。10、单项式的系数是带分数时,应化成假分数。11、单项式的系数是1或1时,通常省略数字“1。12、单项式的次数仅与字母有关,与单项式的系数无关。二、多项式1、几个单项式的和叫做多项式。2、多项式中的每一个单项式叫做多项式的项。3、多项式中不含字母的项叫做常数项。4、一个多项式有几项,就叫做几项式。5、多项式的每一项都包括项前面的符号。6、多项式没有系数的概念,但有次数的概念。7、多项式中次数最高的项的次数,叫做这个多项式的次数。三、整式1、单项式和多项式统称为整式。2、单项式或多项式都是整式。3、整式不一定是单项式。4、整式不一定
3、是多项式。5、分母中含有字母的代数式不是整式;而是今后将要学习的分式。四、整式的加减1、整式加减的理论根据是:去括号法那么,合并同类项法那么,以及乘法分配率。2、几个整式相加减,关键是正确地运用去括号法那么,然后准确合并同类项。3、几个整式相加减的一般步骤:1列出代数式:用括号把每个整式括起来,再用加减号连接。2按去括号法那么去括号。3合并同类项。4、代数式求值的一般步骤:1代数式化简。2代入计算3对于某些特殊的代数式,可采用“整体代入进行计算。五、同底数幂的乘法1、n个相同因式或因数a相乘,记作an,读作a的n次方幂,其中a为底数,n为指数,an的结果叫做幂。2、底数相同的幂叫做同底数幂。3
4、、同底数幂乘法的运算法那么:同底数幂相乘,底数不变,指数相加。即:aman=am+n。4、此法那么也可以逆用,即:am+n = aman。5、开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法那么。六、幂的乘方1、幂的乘方是指几个相同的幂相乘。amn表示n个am相乘。2、幂的乘方运算法那么:幂的乘方,底数不变,指数相乘。amn =amn。3、此法那么也可以逆用,即:amn =amn=anm。七、积的乘方1、积的乘方是指底数是乘积形式的乘方。2、积的乘方运算法那么:积的乘方,等于把积中的每个因式分别乘方,然后把所得的幂相乘。即abn=anbn。3、此法那么也可以逆用
5、,即:anbn =abn。八、三种“幂的运算法那么异同点1、共同点:1法那么中的底数不变,只对指数做运算。2法那么中的底数不为零和指数具有普遍性,即可以是数,也可以是式单项式或多项式。3对于含有3个或3个以上的运算,法那么仍然成立。2、不同点:1同底数幂相乘是指数相加。2幂的乘方是指数相乘。3积的乘方是每个因式分别乘方,再将结果相乘。九、同底数幂的除法1、同底数幂的除法法那么:同底数幂相除,底数不变,指数相减,即:aman=am-na0。2、此法那么也可以逆用,即:am-n = amana0。十、零指数幂1、零指数幂的意义:任何不等于0的数的0次幂都等于1,即:a0=1a0。十一、负指数幂1、
6、任何不等于零的数的p次幂,等于这个数的p次幂的倒数,即:注:在同底数幂的除法、零指数幂、负指数幂中底数不为0。十二、整式的乘法一单项式与单项式相乘1、单项式乘法法那么:单项式与单项式相乘,把它们的系数、相同字母的幂分别相乘,其余字母连同它的指数不变,作为积的因式。2、系数相乘时,注意符号。3、相同字母的幂相乘时,底数不变,指数相加。4、对于只在一个单项式中含有的字母,连同它的指数一起写在积里,作为积的因式。5、单项式乘以单项式的结果仍是单项式。6、单项式的乘法法那么对于三个或三个以上的单项式相乘同样适用。二单项式与多项式相乘1、单项式与多项式乘法法那么:单项式与多项式相乘,就是根据分配率用单项
7、式去乘多项式中的每一项,再把所得的积相加。即:m(a+b+c)=ma+mb+mc。2、运算时注意积的符号,多项式的每一项都包括它前面的符号。3、积是一个多项式,其项数与多项式的项数相同。4、混合运算中,注意运算顺序,结果有同类项时要合并同类项,从而得到最简结果。三多项式与多项式相乘1、多项式与多项式乘法法那么:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。即:(m+n)(a+b)=ma+mb+na+nb。2、多项式与多项式相乘,必须做到不重不漏。相乘时,要按一定的顺序进行,即一个多项式的每一项乘以另一个多项式的每一项。在未合并同类项之前,积的项数等于两个多
8、项式项数的积。3、多项式的每一项都包含它前面的符号,确定积中每一项的符号时应用“同号得正,异号得负。4、运算结果中有同类项的要合并同类项。5、对于含有同一个字母的一次项系数是1的两个一次二项式相乘时,可以运用下面的公式简化运算:(x+a)(x+b)=x2+(a+b)x+ab。十三、平方差公式1、a+b(a-b)=a2-b2,即:两数和与这两数差的积,等于它们的平方之差。2、平方差公式中的a、b可以是单项式,也可以是多项式。3、平方差公式可以逆用,即:a2-b2=a+b(a-b)。4、平方差公式还能简化两数之积的运算,解这类题,首先看两个数能否转化成a+b(a-b)的形式,然后看a2与b2是否容
9、易计算。十四、完全平方公式1、即:两数和或差的平方,等于它们的平方和,加上或减去它们的积的2倍。2、公式中的a,b可以是单项式,也可以是多项式。3、掌握理解完全平方公式的变形公式:1234、完全平方式:我们把形如:的二次三项式称作完全平方式。5、当计算较大数的平方时,利用完全平方公式可以简化数的运算。6、完全平方公式可以逆用,即:十五、整式的除法一单项式除以单项式的法那么1、单项式除以单项式的法那么:一般地,单项式相除,把系数、同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,那么连同它的指数一起作为商的一个因式。2、根据法那么可知,单项式相除与单项式相乘计算方法类似,也是分成系数
10、、相同字母与不相同字母三局部分别进行考虑。二多项式除以单项式的法那么1、多项式除以单项式的法那么:多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。用字母表示为:2、多项式除以单项式,注意多项式各项都包括前面的符号。知识点一概念应用1、单项式和多项式统称为整式。单项式有三种:单独的字母a,-w等;单独的数字125,3.25,-14562等;数字与字母乘积的一般形式-2s, ,等。2、 单项式的系数是指数字局部,如的系数是 (注意系数局部应包含,因为是常数;单项式的次数是它所有字母的指数和记住不包括数字和的指数,如次数是8。3、多项式:几个单项式的和叫做多项式。4、多项式
11、的特殊形式:等。5、 一个多项式次数最高的项的次数叫做这个多项式的次数。如是3次3项式。6、单独的一个非零数的次数是0。知识点二公式应用1 、 (m,n都是正整数如。拓展运用 如=2, =8,求。 解:=28=16.2 、 (m,n都是正整数 如拓展应用。 假设,那么。3、(n是正整数) 拓展运用。4、(a不为0,m,n都为正整数,且m大于n)。拓展应用 如假设,那么。5、;,是正整数)。 如6、平方差公式 a为相同项,b为相反项。如7、完全平方公式 逆用:如8、应用式: 两位数 10ab 三位数 100a10bc。9、单项式与多项式相乘:m(a+b+c)=ma+mb+mc。10、多项式与多项
12、式相乘:(m+n)(a+b)=ma+mb+na+nb。11、多项式除以单项式的法那么:12、常用变形:知识点三运算:1、常见误区:1、;2、 ; 3、;4、; 5、;6、; 7、 ;8、 ; 9、1, 1;10、 ;11、 ;12、 。2 、简便运算:公式类 平方差公式完全平方公式第二章平行线与相交线余角余角补角补角角两线相交对顶角平行线与相交线同位角三线八角内错角同旁内角平行线的判定平行线平行线的性质尺规作图一、平行线与相交线平行线:在同一平面内,不相交的两条直线叫做平行线。假设两条直线只有一个公共点,我们称这两条直线为相交线。二、余角与补角1、如果两个角的和是直角,那么称这两个角互为余角,
13、简称为互余,称其中一个角是另一个角的余角。2、如果两个角的和是平角,那么称这两个角互为补角,简称为互补,称其中一个角是另一个角的补角。3、互余和互补是指两角和为直角或两角和为平角,它们只与角的度数有关,与角的位置无关。4、余角和补角的性质:同角或等角的余角相等,同角或等角的补角相等。5、余角和补角的性质用数学语言可表示为:1那么(同角的余角或补角相等)。2且那么(等角的余角或补角相等)。6、余角和补角的性质是证明两角相等的一个重要方法。三、对顶角1、两条直线相交成四个角,其中不相邻的两个角是对顶角。2、一个角的两边分别是另一个角的两边的反向延长线,这两个角叫做对顶角。3、对顶角的性质:对顶角相
14、等。4、对顶角的性质在今后的推理说明中应用非常广泛,它是证明两个角相等的依据及重要桥梁。5、对顶角是从位置上定义的,对顶角一定相等,但相等的角不一定是对顶角。四、垂线及其性质ABCDO1、垂线:当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中的一条直线叫做另一条直线的垂线,它们的交点叫做垂足表示符号“。符号语言记作:如下图:ABCD,垂足为O2、垂线的性质:性质1:过一点有且只有一条直线与直线垂直。性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。五、同位角、内错角、同旁内角1、两条直线被第三条直线所截,形成了8个角。三线八角2、同位角:两个角都在两条直线
15、的同侧,并且在第三条直线截线的同旁,这样的一对角叫做同位角。3、内错角:两个角都在两条直线之间,并且在第三条直线截线的两旁,这样的一对角叫做内错角。4、同旁内角:两个角都在两条直线之间,并且在第三条直线截线的同旁,这样的一对角叫同旁内角。5、这三种角只与位置有关,与大小无关,通常情况下,它们之间不存在固定的大小关系。六、六类角1、补角、余角、对顶角、同位角、内错角、同旁内角六类角都是对两角来说的。2、余角、补角只有数量上的关系,与其位置无关。3、同位角、内错角、同旁内角只有位置上的关系,与其数量无关。4、对顶角既有数量关系,又有位置关系。七、平行线的判定方法1、同位角相等,两直线平行。2、内错
16、角相等,两直线平行。3、同旁内角互补,两直线平行。4、在同一平面内,如果两条直线都平行于第三条直线,那么这两条直线平行。5、在同一平面内,如果两条直线都垂直于第三条直线,那么这两条直线平行。八、平行线的性质1、两直线平行,同位角相等。2、两直线平行,内错角相等。3、两直线平行,同旁内角互补。4、平行线的判定与性质具备互逆的特征,其关系如下:补充平行线的判定方法:1平行线的定义:如果两条直线没有交点不相交,那么两直线平行2平行于同一条直线的两直线平行ABCDEF1234。几何符号语言:32ABCD同位角相等,两直线平行12ABCD内错角相等,两直线平行42180ABCD同旁内角互补,两直线平行请
17、同学们注意书写的顺序以及前因后果,平行线的判定是由角相等,然后得出平行。平行线的判定是写角相等,然后写平行。在应用时要正确区分积极向上的题设和结论。九、尺规作线段和角1、在几何里,只用没有刻度的直尺和圆规作图称为尺规作图。2、尺规作图是最根本、最常见的作图方法,通常叫根本作图。3、尺规作图中直尺的功能是:1在两点间连接一条线段;2将线段向两方延长。4、尺规作图中圆规的功能是:1以任意一点为圆心,任意长为半径作一个圆;2以任意一点为圆心,任意长为半径画一段弧;5、熟练掌握以下作图语言:1作射线;2在射线上截取=;3在射线上依次截取=;4以点为圆心,为半径画弧,交于点;5分别以点、点为圆心,以、为
18、半径作弧,两弧相交于点;6过点和点画直线或画射线;7在的外部或内部画=;6、在作较复杂图形时,涉及根本作图的地方,不必重复作图的详细过程,只用一句话概括表达就可以了。1画线段=;2画=;知识点一1、方位问题假设从A点看B是北偏东20,那么从B看A是南偏西20.南北相对;东西相对,数值不变;DN从甲地到乙地,经过两次拐弯假设方向不变,那么两次拐向相反,角相等;假设方向相反,那么两次拐向相同,角互补。C2、光反射问题如图 假设光线AO沿OB被镜面反射那么BAAOC=BOD AON=BON.第三章变量之间的关系自变量变量的概念因变量变量之间的关系表格法关系式法变量的表达方法速度时间图象图象法路程时间
19、图象一、变量、自变量、因变量1、在某一变化过程中,不断变化的量叫做变量。2、如果一个变量y随另一个变量x的变化而变化,那么把x叫做自变量,y叫做因变量。3、自变量与因变量确实定:1自变量是先发生变化的量;因变量是后发生变化的量。2自变量是主动发生变化的量,因变量是随着自变量的变化而发生变化的量。3利用具体情境来体会两者的依存关系。二、表格1、表格是表达、反映数据的一种重要形式,从中获取信息、研究不同量之间的关系。1首先要明确表格中所列的是哪两个量;2分清哪一个量为自变量,哪一个量为因变量;3结合实际情境理解它们之间的关系。2、绘制表格表示两个变量之间关系1列表时首先要确定各行、各列的栏目;2一
20、般有两行,第一行表示自变量,第二行表示因变量;3写出栏目名称,有时还根据问题内容写上单位;4在第一行列出自变量的各个变化取值;第二行对应列出因变量的各个变化取值。5一般情况下,自变量的取值从左到右应按由小到大的顺序排列,这样便于反映因变量与自变量之间的关系。三、关系式1、用关系式表示因变量与自变量之间的关系时,通常是用含有自变量用字母表示的代数式表示因变量也用字母表示,这样的数学式子等式叫做关系式。2、关系式的写法不同于方程,必须将因变量单独写在等号的左边。3、求两个变量之间关系式的途径:1将自变量和因变量看作两个未知数,根据题意列出关于未知数的方程,并最终写成关系式的形式。2根据表格中所列的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2018 七年 级数 下册 全部 知识点 归纳
限制150内