《初中数学中考复习知识点总结北师大.doc》由会员分享,可在线阅读,更多相关《初中数学中考复习知识点总结北师大.doc(50页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精品文档中考数学复习方案一、第一轮复习3-4周1、第一轮复习的形式:“梳理知识脉络,构建知识体系-理解为主,做题为辅1目的:过三关过记忆关 必须做到:在准确理解的根底上,牢记所有的根本概念定义、公式、定理,推论性质,法那么等。过根本方法关 需要做到:以基此题型为纲,理解并掌握中学数学中的根本解题方法,例如:配方法,因式分解法,换元法,判别式法(韦达定理),待定系数法,构造法,反证法等。过根本技能关。应该做到:无论是对典型题、基此题,还是对综合题,应该很清楚地知道该题目所要考查的知识点,并能找到相应的解题方法。2宗旨:知识系统化在这一阶段的教学把书中的内容进行归纳整理、组块,使之形成结构。数与代
2、数分为3个大单元:数与式、方程与不等式、函数。空间和图形分为3个大单元:几何根本概念线与角,平面图形,立体图形统计与概率分为2个大单元:统计与概率2、第一轮复习应注意的问题1必须扎扎实实夯实根底中考试题按难:中:易=1:2:7的比例,根底分占总分的70%,因此必须对根底数学知识做到“准确理解和“熟练掌握,在应用根底知识时能做到熟练、正确和迅速。2必须深钻教材,不能脱离课本按中考试卷的设计原那么,根底题都是送分的题,有不少根底题都是课本上的原题或改造。3掌握根底知识,一定要从理解角度出发数学知识的学习,必须要建立逻辑思维能力,根底知识只有理解透了,才可以举一反三、触类旁通。相对而言,“题海战术在
3、这个阶段是不适用的。二、第二轮复习3周1、第二轮复习的形式:“突出重点,综合提高-练习专题化,专题规律化1目的:融会贯穿考纲上的所有知识点进行专题化训练将所有考纲上要求的知识点分为为多个专题,按专题进行复习,进行有针对性的、典型性、层次性、切中要害的强化练习。突出重点,难点和热点的内容在专题训练的根底上,要突出重点,抓住热点,突破难点。按照中考的出题规律,每年的重点、难点和热点内容都大同小异,。2宗旨:建立数学思想,培养数学能力在对初中阶段所有数学根本知识的理解掌握前提下,应该努力做到:建立函数与方程的思想从函数的角度,去理解数,函数,方程、代数式以及跟图像的对应转化关系。提高数学阅读分析的能
4、力 学会用数学语言描述问题,并能复原问题的数学描述。2、第二轮复习应注意的问题1专题的划分要合理专题的划分标准为相关知识点的联系紧密程度。专题要有代表性和针对性,切忌面面俱到;始终围绕热点、难点、重点特别是中考必考内容选定专题。2保证一定的习题量所谓“熟能生巧,在这个阶段,所要做的就是将关键知识点进行综合、稳固、完善、提高。要尽可能多的接触各类典型题。3注重多思考,并及时总结规律每个专题内的知识点具有必然的紧密联系,不同专题之间的知识点同样会发生关联融合,要注重解题后的反思,总结规律。三、第三轮复习2-3周1、第三轮复习的形式:“模拟训练,查缺补漏目的:突破中考分数的非知识角度的障碍研究历年中
5、考真题,选择含金量高的模拟题分析历年中考题,对考点的掌握做到心中有数。选择梯度设计合理,立足中考又稍高于中考难度的模拟题来做。调整自己的心里状态考试的成绩绝不仅仅取决于对知识点的掌握,在真正的考场上,心理状态和心里素质会带来很大的影响,所以在模拟训练时,一定要严格按照真正中考的时间以及相关要求来训练。2、第三轮复习应注意的问题1通过做模拟题进行查缺补漏中考大纲要求掌握的知识点可谓众多,在经过前两轮的复习后,最后需要用做模拟题的方式来检查是否有遗漏生疏的知识点。2克服不良的考试习惯中考考题都有相应的判分规那么,要按照判分规那么去优化答题思路和步骤,必须防止因为“审题不仔细,凭印象答题以及答题不标
6、准等原因造成的失分。3总结适当的应试技巧在实际的考试过程中,完成一道题目并不一定非要按照从知识点的应用角度出发。针对不少典型题,都有相应的解题技巧,既节约了做题时间,还保证了结果正确。第一章 实数考点一、实数的概念及分类 3分1、实数的分类 正有理数 有理数 零 有限小数和无限循环小数实数 负有理数 正无理数 无理数 无限不循环小数 负无理数2、无理数在理解无理数时,要抓住“无限不循环这一时之,归纳起来有四类:1开方开不尽的数,如等;2有特定意义的数,如圆周率,或化简后含有的数,如+8等;等;4某些三角函数,如sin60o等考点二、实数的倒数、相反数和绝对值 3分1、相反数实数与它的相反数时一
7、对数只有符号不同的两个数叫做互为相反数,零的相反数是零,从数轴上看,互为相反数的两个数所对应的点关于原点对称,如果a与b互为相反数,那么有a+b=0,a=b,反之亦成立。2、绝对值一个数的绝对值就是表示这个数的点与原点的距离,|a|0。零的绝对值时它本身,也可看成它的相反数,假设|a|=a,那么a0;假设|a|=-a,那么a0。正数大于零,负数小于零,正数大于一切负数,两个负数,绝对值大的反而小。3、倒数如果a与b互为倒数,那么有ab=1,反之亦成立。倒数等于本身的数是1和-1。零没有倒数。考点三、平方根、算数平方根和立方根 310分1、平方根如果一个数的平方等于a,那么这个数就叫做a的平方根
8、或二次方跟。一个数有两个平方根,他们互为相反数;零的平方根是零;负数没有平方根。正数a的平方根记做“。2、算术平方根正数a的正的平方根叫做a的算术平方根,记作“。正数和零的算术平方根都只有一个,零的算术平方根是零。 0 ;注意的双重非负性:-0 03、立方根如果一个数的立方等于a,那么这个数就叫做a 的立方根或a 的三次方根。一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:,这说明三次根号内的负号可以移到根号外面。考点四、科学记数法和近似数 36分1、有效数字一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,
9、都叫做这个数的有效数字。2、科学记数法把一个数写做的形式,其中,n是整数,这种记数法叫做科学记数法。考点五、实数大小的比拟 3分1、数轴规定了原点、正方向和单位长度的直线叫做数轴画数轴时,要注意上述规定的三要素缺一不可。解题时要真正掌握数形结合的思想,理解实数与数轴的点是一一对应的,并能灵活运用。2、实数大小比拟的几种常用方法1数轴比拟:在数轴上表示的两个数,右边的数总比左边的数大。2求差比拟:设a、b是实数,3求商比拟法:设a、b是两正实数,4绝对值比拟法:设a、b是两负实数,那么。5平方法:设a、b是两负实数,那么。考点六、实数的运算 做题的根底,分值相当大1、加法交换律 2、加法结合律
10、3、乘法交换律 4、乘法结合律 5、乘法对加法的分配律 6、实数的运算顺序先算乘方,再算乘除,最后算加减,如果有括号,就先算括号里面的。第二章 代数式考点一、整式的有关概念 3分1、代数式用运算符号把数或表示数的字母连接而成的式子叫做代数式。单独的一个数或一个字母也是代数式。2、单项式只含有数字与字母的积的代数式叫做单项式。注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示,如,这种表示就是错误的,应写成。一个单项式中,所有字母的指数的和叫做这个单项式的次数。如是6次单项式。考点二、多项式 11分1、多项式几个单项式的和叫做多项式。其中每个单项式叫做这个多项式的项。多项式中
11、不含字母的项叫做常数项。多项式中次数最高的项的次数,叫做这个多项式的次数。单项式和多项式统称整式。用数值代替代数式中的字母,按照代数式指明的运算,计算出结果,叫做代数式的值。注意:1求代数式的值,一般是先将代数式化简,然后再将字母的取值代入。 2求代数式的值,有时求不出其字母的值,需要利用技巧,“整体代入。2、同类项所有字母相同,并且相同字母的指数也分别相同的项叫做同类项。几个常数项也是同类项。3、去括号法那么1括号前是“+,把括号和它前面的“+号一起去掉,括号里各项都不变号。2括号前是“,把括号和它前面的“号一起去掉,括号里各项都变号。4、整式的运算法那么整式的加减法:1去括号;2合并同类项
12、。整式的乘法: 整式的除法:注意:1单项式乘单项式的结果仍然是单项式。2单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同。3计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号。4多项式与多项式相乘的展开式中,有同类项的要合并同类项。5公式中的字母可以表示数,也可以表示单项式或多项式。67多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加,单项式除以多项式是不能这么计算的。考点三、因式分解 11分1、因式分解把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。2、因式分解的常用方法1提公
13、因式法:2运用公式法: 3分组分解法:4十字相乘法:3、因式分解的一般步骤:1如果多项式的各项有公因式,那么先提取公因式。2在各项提出公因式以后或各项没有公因式的情况下,观察多项式的项数:2项式可以尝试运用公式法分解因式;3项式可以尝试运用公式法、十字相乘法分解因式;4项式及4项式以上的可以尝试分组分解法分解因式3分解因式必须分解到每一个因式都不能再分解为止。考点四、分式 810分1、分式的概念一般地,用A、B表示两个整式,AB就可以表示成的形式,如果B中含有字母,式子就叫做分式。其中,A叫做分式的分子,B叫做分式的分母。分式和整式通称为有理式。2、分式的性质1分式的根本性质:分式的分子和分母
14、都乘以或除以同一个不等于零的整式,分式的值不变。2分式的变号法那么:分式的分子、分母与分式本身的符号,改变其中任何两个,分式的值不变。3、分式的运算法那么考点五、二次根式 初中数学根底,分值很大1、二次根式式子叫做二次根式,二次根式必须满足:含有二次根号“;被开方数a必须是非负数。2、最简二次根式假设二次根式满足:被开方数的因数是整数,因式是整式;被开方数中不含能开得尽方的因数或因式,这样的二次根式叫做最简二次根式。化二次根式为最简二次根式的方法和步骤:1如果被开方数是分数包括小数或分式,先利用商的算数平方根的性质把它写成分式的形式,然后利用分母有理化进行化简。2如果被开方数是整数或整式,先将
15、他们分解因数或因式,然后把能开得尽方的因数或因式开出来。3、同类二次根式几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式。4、二次根式的性质1 2 345、二次根式混合运算二次根式的混合运算与实数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的或先去括号。第三章 方程组考点一、一元一次方程的概念 6分1、方程含有未知数的等式叫做方程。2、方程的解能使方程两边相等的未知数的值叫做方程的解。3、等式的性质1等式的两边都加上或减去同一个数或同一个整式,所得结果仍是等式。2等式的两边都乘以或除以同一个数除数不能是零,所得结果仍是等式。4、一元一次方程只
16、含有一个未知数,并且未知数的最高次数是1的整式方程叫做一元一次方程,其中方程叫做一元一次方程的标准形式,a是未知数x的系数,b是常数项。考点二、一元二次方程 6分1、一元二次方程含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。2、一元二次方程的一般形式,它的特征是:等式左边十一个关于未知数x的二次多项式,等式右边是零,其中叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。考点三、一元二次方程的解法 10分1、直接开平方法利用平方根的定义直接开平方求一元二次方程的解的方法叫做直接开平方法。直接开平方法适用于解形如的一元二次方程。根据平方根的定义可知
17、,是b的平方根,当时,当b0b0 y 0 x图像经过一、二、三象限,y随x的增大而增大。b0 y 0 x图像经过一、三、四象限,y随x的增大而增大。K0 y 0 x 图像经过一、二、四象限,y随x的增大而减小b0时,图像经过第一、三象限,y随x的增大而增大;2当k0时,y随x的增大而增大2当k0k0时,函数图像的两个分支分别在第一、三象限。在每个象限内,y随x 的增大而减小。x的取值范围是x0, y的取值范围是y0;当k0a0 y 0 x y 0 x 性质1抛物线开口向上,并向上无限延伸;2对称轴是x=,顶点坐标是,;3在对称轴的左侧,即当x时,y随x的增大而增大,简记左减右增;4抛物线有最低点,当x=时,y有最小值,1抛物线开口向下,并向下无限延伸;2对称轴是x=,顶点坐标是,;3在对称轴的左侧,即当x时,y随x的增大而减小,简记左增右减;4抛物线有最高点,当x=时,y有最大值,2、二次函数中,的含义:表示开口方向:0时,抛物线开口向上 0时,图像与x轴有两个交点;当=0时,图像与x轴有一个交点;当0时,图像与x轴没有交点。补充:1、两点间距离公式当遇
限制150内