《勾股定理》教案 (公开课获奖)2022沪科版.pdf
《《勾股定理》教案 (公开课获奖)2022沪科版.pdf》由会员分享,可在线阅读,更多相关《《勾股定理》教案 (公开课获奖)2022沪科版.pdf(4页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、18.118.1 勾股定理勾股定理一、教学目标1了解勾股定理的发现过程,掌握勾股定理的内容,会用面积法证明勾 股定理。2培养在实际生活中发现问题总结规律的意识和能力。3介绍我国古代在勾股定理研究方面所取得的成就,激发学生的爱国热情,促其勤奋学习。二、重点、难点1重点:勾股定理的内容及证明。2难点:勾股定理的证明。三、例题的意图分析例1(补充)通过对定理的证明,让学生确信定理的正确性;通过拼图,发散学生的思维,锻炼学生的动手实践能力;这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2使学生明确,图形经过割补拼接后,只要没有重叠,没有空隙,面积不会改变。进一步
2、让学生确信勾股定理的正确性。四、课堂引入目前世界上许多科学家正在试图寻找其他星球的“人”,为此向宇宙发出了许多信号,如地球上人类的语言、音乐、各种图形等。我国数学家华罗庚曾建议,发射一种反映勾股定理的图形,如果宇宙人是“文明人”,那么他们一定会识别这种语言的。这个事实可以说明勾股定理的重大意义。尤其是在两千年前,是非常了不起的成就。让学生画一个直角边为3cm和4cm的直角ABC,用刻度尺量出AB的长。以上这个事实是我国古代3000多年前有一个叫商高的人发现的,他说:“把一根直尺折成直角,两段连结得一直角三角形,勾广三,股修四,弦隅五。”这句话意思是说一个直角三角形较短直角边(勾)的长是3,长的
3、直角边(股)的长是4,那么斜边(弦)的长是5。再画一个两直角边为5和12的直角ABC,用刻度尺量AB的长。你是否发现32+42与52的关系,52+122和132的关系,即32+42=52,52+122=132,那么就有勾2+股2=弦2。对于任意的直角三角形也有这个性质吗?五、例习题分析例1(补充)已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:让学生准备多个三角形模型,最好是有颜色的吹塑纸,让学生拼摆不同的形状,利用面积相等进行证明。拼成如图所示,其等量关系为:4S+S小正=S大正4 ab(ba)2=c2,化简可证。发挥学生的想象能力拼出不同的图形,进行证
4、明。勾股定理的证明方法,达300余种。这个古老的精彩的证法,出自我国古代无名数学家之手。激发学生的民族自豪感,和爱国情怀。例2已知:在ABC中,C=90,A、B、C的对边为a、b、c。求证:a2b2=c2。分析:左右两边的正方形边长相等,则两个正方形的面积相等。左边S=4 abc2右边S=(a+b)2左边和右边面积相等,即4 abc2=(a+b)2第2课时一、教学目标1会用勾股定理进行简单的计算。2树立数形结合的思想、分类讨论思想。二、重点、难点1重点:勾股定理的简单计算。2难点:勾股定理的灵活运用。三、例题的意图分析例1(补充)使学生熟悉定理的使用,刚开始使用定理,让学生画好图形,并标好图形
5、,理清边之间的关系。让学生明确在直角三角形中,已知任意两边都可以求出第三边。并学会利用不同的条件转化为已知两边求第三边。例2(补充)让学生注意所给条件的不确定性,知道考虑问题要全面,体会分类讨论思想。例3(补充)勾股定理的使用范围是在直角三角形中,因此注意要创造直角三角形,作高是常用的创造直角三角形的辅助线做法。让学生把前面学过的知识和新知识综合运用,提高综合能力。四、课堂引入复习勾股定理的文字叙述;勾股定理的符号语言及变形。学习勾股定理重在应用。五、例习题分析例1(补充)在RtABC,C=90已知a=b=5,求c。已知a=1,c=2,求b。已知c=17,b=8,求a。已知a:b=1:2,c=
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 勾股定理 勾股定理教案 公开课获奖2022沪科版 教案 公开 获奖 2022 沪科版
限制150内