2022届东莞市高三第二次诊断性检测数学试卷含解析.pdf
《2022届东莞市高三第二次诊断性检测数学试卷含解析.pdf》由会员分享,可在线阅读,更多相关《2022届东莞市高三第二次诊断性检测数学试卷含解析.pdf(19页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2021-2022高考数学模拟试卷考生须知:1,全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2,请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,平面四边形ACB。中,A B 1 B C,A B A,D A,A B =A D l,BC=及,现将ABZ)沿AB翻折,使点。移动至点P,且Q 4_LA C,则
2、三棱锥P 4B C的外接球的表面积为()A.8万 B.6万 C.44 D.-7132.若x e0,l时,-|2 x-|0,则a的取值范围为()A.-1,1 B.2-e,e-2 C.2-e,l D.21n2-2,ln3.已知水平放置的AABC是按“斜二测画法”得到如图所示的直观图,其中BO=CO=,A O =-,那么原A ABC2的面积是()A.6 B.272C.3 D.B2 42 24.设耳,入是双曲线C:二-二=l(a 0/0)的左,右焦点,。是坐标原点,过点尸2作。的一条渐近线的垂cT b,线,垂足为P.若 归 用=迷|。耳,则。的离心率为()A.0 B.73 C.2 D.35.E.5.在
3、天文学中,天体的明暗程度可以用星等或亮度来描述.两颗星的星等与亮度满足m2一g=不怆”,其中星等为2 E2四 的星的亮度为&(A=l,2).已知太阳的星等是-2 6.7,天狼星的星等是-1.4 5,则太阳与天狼星的亮度的比值为()A.1O10 1 1-1B.10.1C.IglO.lI).1O-10-16.二 项 式(展开式中,项的系数为()k2 X)x945189212835A.-B.-C.-D.-163264810.2020年是脱贫攻坚决战决胜之年,某市为早日实现目标,现将甲、乙、丙、丁 4名干部派遣到A、B、C三个贫困县扶贫,要求每个贫困县至少分到一人,则甲被派遣到A县的分法有()A.6
4、种 B.12 种 C.24 种 D.36 种11.2019年10月1 7日是我国第6个“扶贫日”,某医院开展扶贫日“送医下乡”医疗义诊活动,现有五名医生被分配到四所不同的乡镇医院中,医生甲被指定分配到医院A,医生乙只能分配到医院A或医院8,医生丙不能分配到医生甲、乙所在的医院,其他两名医生分配到哪所医院都可以,若每所医院至少分配一名医生,则不同的分配方案共有()A.18 种 B.20 种 C.22 种 D.24 种1 2.已知向量万,万满足|万|=1,区|=2,且日与石的夹角为120。,则 归-3可=()A.而 B.而 C.2V10 D.743二、填空题:本题共4小题,每小题5分,共20分。7
5、.设双曲线 :一 斗=0/o)的左右焦点分别为,工,点E(0,r)(z 0).已知动点P在双曲线C的右支a b上,且点R E,外不共线.若APE心的周长的最小值为4 8,则双曲线C的离心率。的取值范围是()8.已知向量2=。”,1),5 =(3,根一2),则加=3是/4的()A.充分不必要条件 B.必要不充分条件C.既不充分也不必要条件 D.充要条件9.已知非零向量、b 若W=2问且|2 -0=百 忖,则向量坂在向量方向上的投影为()A-日 丹 kD诽13.已知一个四面体A8C D 的每个顶点都在表面积为9/r的球。的表面上,且 AB=CD=a,AC=AD=BC=BD=小,贝!1。=.14.已
6、知矩形ABCD,AB=4,BC=3,以 A,B 为焦点,且 过 C,D 两 点 的 双 曲 线 的 离 心 率 为.15.已知随机变量 X N(4,b?),且 P(2 X W 6)=0.8,则 P(X 016.若实数x,N满足不等式组2x+y 3 2 0,则 2x+3),的 最 小 值 为.x+y 30)上的一点,以点A 和点5(2,0)为直径两端点的圆C 交直线x=l于 M,N 两点.(1)若|M N|=2,求抛物线E 的方程;(2)若 O V p V l,抛物线E 与圆(*-5)2+必=9 在*轴上方的交点为P,Q,点 G 为 的 中 点,0 为坐标原点,求直线 0G 斜率的取值范围.19
7、.(12分)一酒企为扩大生产规模,决定新建一个底面为长方形MNP。的室内发酵馆,发酵馆内有一个无盖长方体发酵池,其底面为长方形A3QD(如图所示),其中AO 2 AB.结合现有的生产规模,设定修建的发酵池容积为450米,深 2 米.若池底和池壁每平方米的造价分别为200元 和 150元,发酵池造价总费用不超过65400元(1)求 发 酵 池 边 长 的 范 围;(2)在建发酵馆时,发酵池的四周要分别留出两条宽为4 米和b 米的走道(6 为常数).问:发酵池的边长如何设计,可使得发酵馆占地面积最小.20.(12分)在 N A 8C 中,内角4,B,C 的对边分别为a,b,c,且满足JGa=W c
8、 o s C-c s in 8.(1)求 5;(2)若b=2粗,A Z)为B C边上的中线,当 A B C 1的面积取得最大值时,求4。的长.2 1.(1 2分)如 图,在四棱锥尸-4 8 C D中,底面A B C。为菱形,R 4 J L底面A B C。,N A 4 O=6 0。,AB=PA=4,E是 的 中 点,AC,8 0交于点O.(1)求证:0 E 平面5 C;(2)求三棱锥E -P B D的体积.2 2.(1 0分)已知抛物线C:/=4%的焦点为产,准线/与x轴交于点M,点尸在抛物线上,直线PE与抛物线C交于另一点A.(1)设直线M P,的斜率分别为尤,k2,求证:匕+%常 数;(2)
9、设M M A的内切圆圆心为G(a,b)的半径为,试用,表示点G的横坐标。;当AP MA的内切圆的面积为1 7 T时,求 直 线 的 方 程.2参考答案一、选择题:本题共1 2小题,每小题5分,共6 0分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】由题意可得2 4上面A B C,可知因为则3CJ_面2钻,于是3 C,P8.由此推出三棱锥。一ABC外接球球心是PC的中点,进而算出CP=2,外接球半径为1,得出结果.【详解】解:由翻折后得到Q 4L A B,又Q4_LAC,则 R4上面 A B C,可知 B4_13c.又因为A8_LBC,则8。_1_面上钻,于是BC_LPB,
10、因此三棱锥P-ABC外接球球心是PC的中点.计算可知CP=2,则外接球半径为1,从而外接球表面积为4万.故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.2.D【解析】由题得 2x-exa 2x+e 对 Vx G 0,1恒成立,令/(x)=2x-e*,g(x)=2x+ex,然后分别求出/(力2g(%,即可得4的取值范围【详解】由题得2x-e a 2(a +c),从而求出双曲线的离心率的取值范围;【详解】解:依题意可得如下图象,CPEA=P E+P F2+EF2=P E+P F2+EFi=PE+PF+EF-2a2
11、PFt-2a=4b2PFt=2 a+4 8 2(a+c)所以2 8 c则 4 c 2 一 4/c2所以3 c 2 4 Y所以=彳 a2 3所以e?1,即ee,+8故选:A【点睛】本题考查双曲线的简单几何性质,属于中档题.8.A【解析】向量1 =(/,1),1=(3,加 一 2),al 1b 贝!I 3 =M 机-2),即 一2 m一3 =0,2 =3 或者-1,判断出即可.【详解】解:向量 a =(/找,1),b=(3,m2)al 4,贝 1 1 3 =m(m 2),即加之一?,”一 3 =0,机=3或者-1,所以机=3是?=3或者加=-1的充分不必要条件,故选:A.【点睛】本小题主要考查充分
12、、必要条件的判断,考查向量平行的坐标表示,属于基础题.9.D【解析】设非零向量与坂的夹角为。,在 等 式 忻-4=百 忖 两边平方,求出cos。的值,进而可求得向量B在向量方向上的投影为W cos 6,即可得解.【详解】.忖=2同,由|2 -q=6恸 得|2-42=3忸(,整理得2/_ 2 d/_ 7=0,la-2p/|x2|a|cos-4|a|=0,解得cos0=-;,因此,向量坂在向量a方向上的投影为Wcos6=gW.故选:D.【点睛】本题考查向量投影的计算,同时也考查利用向量的模计算向量的夹角,考查计算能力,属于基础题.10.B【解析】分成甲单独到A县和甲与另一人一同到A县两种情况进行分
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 2022 东莞市 第二次 诊断 检测 数学试卷 解析
限制150内