PWM控制直流电机调速(共21页).doc
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《PWM控制直流电机调速(共21页).doc》由会员分享,可在线阅读,更多相关《PWM控制直流电机调速(共21页).doc(21页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上绪论脉宽调制(PWM)控制技术,是利用半导体开关器件的导通和关断,把直流电压变成电压脉冲序列,并控制电压脉冲的宽度和脉冲序列的周期以达到变压变频目的的一种控制技术。PWM控制技术广泛地应用于开关稳压电源,不间断电源(UPS),以及交直流电动机传动等领。本文阐述了PWM变频调速系统的基本原理和特点,并在此基础上给出了一种基于Mitel SA866DE三相PWM波形发生器和绝缘栅双极功率晶体管(IGBT)的变频调速设计方案。 直流电动机具有优良的调速特性,调速平滑、方便,调速范围广;过载能力大,能承受频繁的冲击负载,可实现频繁的无级快速起动、制动和反转;能满足生产过程自动
2、化系统各种不同的特殊运行要求,在许多需要调速或快速正反向的电力拖动系统领域中得到了广泛的应用。 直流电动机的转速调节主要有三种方法:调节电枢供电的电压、减弱励磁磁通和改变电枢回路电阻。针对三种调速方法,都有各自的特点,也存在一定的缺陷。例如改变电枢回路电阻调速只能实现有级调速,减弱磁通虽然能够平滑调速,但这种方法的调速范围不大,一般都是配合变压调速使用。所以,在直流调速系统中,都是以变压调速为主。其中,在变压调速系统中,大体上又可分为可控整流式调速系统和直流PWM调速系统两种。直流PWM调速系统与可控整流式调速系统相比有下列优点:由于PWM调速系统的开关频率较高,仅靠电枢电感的滤波作用就可获得
3、平稳的直流电流,低速特性好,稳速精度高,调速范围宽,可达1:10000左右;同样,由于开关频率高,快速响应特性好,动态抗干扰能力强,可以获得很宽的频带;开关器件只工作在开关状态,主电路损耗小,装置效率高;直流电源采用不控整流时,电网功率因数比相控整流器高。 正因为直流PWM调速系统有以上的优点,并且随着电力电子器件开关性能的不断提高,直流脉宽调制( PWM) 技术得到了飞速的发展。传统的模拟和数字电路PWM已被大规模集成电路所取代,这就使得数字调制技术成为可能。目前,在该领域中大部分应用的是数字脉宽调制器与微处理器集为一体的专用控制芯片, 如TI公司生产的TMS320C24X系列芯片。电动机调
4、速系统采用微机实现数字化控制,是电气传动发展的主要方向之一。采用微机控制后,整个调速系统实现全数字化,结构简单,可靠性高,操作维护方便,电动机稳态运转时转速精度可达到较高水平,静动态各项指标均能较好地满足工业生产中高性能电气传动的要求。专心-专注-专业1 PWM调速控制概述1.1直流电机转速控制1.1.1直流电机转速控制类型直流电机转速控制可分为励磁控制法与电枢电压控制法。励磁控制法是控制磁通,其控制功率小,低速时受到磁饱和限制,高速时受到换向火花和换向器结构强度的限制,而且由于励磁线圈电感较大动态响应较差,所以这种控制方法用得很少。大多数应用场合都使用电枢电压控制法。随着电力电子技术的进步,
5、改变电枢电压可通过多种途径实现,其中PWM(脉宽调制)便是常用的改变电枢电压的一种调速方法。1.1.2直流电动机转速的计算直流电动机转速n=(U-IR)/K其中U为电枢端电压,I为电枢电流,R为电枢电路总电阻,为每极磁通量,K为电动机结构参数。此电路是通过调节电压U来改变电机转速的。此电路电机额定电压为12V。1.2 PWM调速控制的原理PWM调速控制的基本原理是按一个固定频率来接通和断开电源,并根据需要改变一个周期内接通和断开的时间比(占空比)来改变直流电机电枢上电压的占空比,从而改变平均电压,控制电机的转速。在脉宽调速系统中,当电机通电时其速度增加,电机断电时其速度减低。只要按照一定的规律
6、改变通、断电的时间,即可控制电机转速。而且采用PWM技术构成的无级调速系统启停时对直流系统无冲击,并且具有启动功耗小、运行稳定的特点。设电机始终接通电源时,电机转速最大为nmax,且设占空比为D=tT,则电机的平均速度nd为:nd= nmaxD 由公式可知,当改变占空比D=tT时,就可以得到不同的电机平均速度Vd,从而达到调速的目的。严格地讲,平均速度与占空比D并不是严格的线性关系,在一般的应用中,可将其近似地看成线性关系。 在直流电机驱动控制电路中,PWM信号由外部控制电路提供,并经高速光电隔离电路、电机驱动逻辑与放大电路后,驱动H桥下臂的开关来改变直流电机电枢上平均电压,从而控制电机的转速
7、,实现直流电机PWM调速。1.3 桥式电路的结构及原理桥式电路是一种最基本的驱动电路结构。控制电机正反转的桥式驱动电路有单电源和双电源两种驱动方式。由于本例采用单电源的驱动方式可以满足实际的应用需要,所以这里只介绍单电源的驱动方式,其电路如下图1所示。图1 驱动方式注意,在上图中的4个二极管为续流二极管。如果选用的驱动电路中使用的是晶体三极管,那么这4个二极管是必须使用的,其主要作用是用以消除电机所产生的反向电动势,避免该反向电动势对晶体三极管的反向击穿。单电源方式的桥式驱动电路又称为全桥方式驱动或者H桥方式驱动。电机正转时三极管Q1和Q4导通,反转时Q2和Q3导通,两种情况下,加在电机两端的
8、电压极性相反。当4个晶体三极管全部关断时,电机停转。若Q1与Q3关断,而Q2与Q4同时导通时,电机处于短路制动状态,将在瞬时停止转动。这4种状态所对应的H桥式驱动电路状态如下图2所示。 (a) (b) (c) (d)图2 驱动电路状态上图2中,从图(a)到图(d)分别表示H桥式驱动电路的开关工作状态的切换,电机分别处于正转、反转、停机和短路制动4个状态。从图中可以看出,该电机的驱动电路可以完成本例的两个基本要求:通过三极管的放大,保证了电机的驱动电流;通过桥式电路,对不同开关的选择,可以实现单片机的数字电平控制三极管的导通和截止,从而控制小电机的正反转。2 SG3525芯片的选择2.1 SG3
9、525功能简介 SG3525是电流控制型PWM控制器,所谓电流控制型脉宽调制器是按照接反馈电流来调节脉宽的。在脉宽比较器的输入端直接用流过输出电感线圈的信号与误差放大器输出信号进行比较,从而调节占空比使输出的电感峰值电流跟随误差电压变化而变化。由于结构上有电压环和电流环双环系统,因此,无论开关电源的电压调整率、负载调整率和瞬态响应特性都有提高,是目前比较理想的新型控制器。2.2 引脚功能及特点简介SG3525芯片内部电路原理图如图3图3 SG3525芯片内部电路原理1.Inv.input(引脚1):误差放大器反向输入端。在闭环系统中,该引脚接反馈信号。在开环系统中,该端与补偿信号输入端(引脚9
10、)相连,可构成跟随器。 2.Noninv.input(引脚2):误差放大器同向输入端。在闭环系统和开环系统中,该端接给定信号。根据需要,在该端与补偿信号输入端(引脚9)之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型的调节器。 3.Sync(引脚3):振荡器外接同步信号输入端。该端接外部同步脉冲信号可实现与外电路同步。 4.OSC.Output(引脚4):振荡器输出端。 5.CT(引脚5):振荡器定时电容接入端。 6.RT(引脚6):振荡器定时电阻接入端。 7.Discharge(引脚7):振荡器放电端。该端与引脚5之间外接一只放电电阻,构成放电回路。 8.Soft-Start(
11、引脚8):启动电容接入端。该端通常接一只5 的启动电容。 9.Compensation(引脚9):PWM比较器补偿信号输入端。在该端与引脚2之间接入不同类型的反馈网络,可以构成比例、比例积分和积分等类型调节器。 10.Shutdown(引脚10):外部关断信号输入端。该端接高电平时控制器输出被禁止。该端可与保护电路相连,以实现故障保护。 11.Output A(引脚11):输出端A。引脚11和引脚14是两路互补输出端。 12.Ground(引脚12):信号地。 13.Vc(引脚13):输出级偏置电压接入端。 14.Output B(引脚14):输出端B。引脚14和引脚11是两路互补输出端。 1
12、5.Vcc(引脚15):偏置电源接入端。 16.Vref(引脚16):基准电源输出端。该端可输出一温度稳定性极好的基准电压。 特点如下: (1)工作电压范围宽:835V。 (2)5.1(1 1.0%)V微调基准电源。 (3)振荡器工作频率范围宽:100Hz400KHz. (4)具有振荡器外部同步功能。 (5)死区时间可调。 (6)内置启动电路。 (7)具有输入欠电压锁定功能。 (8)具有PWM锁存功能,禁止多脉冲。 (9)逐个脉冲关断。 (10)双路输出(灌电流/拉电流): mA(峰值)。 2.3 SG3525的工作原理 SG3525内置了5.1V精密基准电源,微调至 1.0%,在误差放大器共
13、模输入电压范围内,无须外接分压电组。SG3525还增加了同步功能,可以工作在主从模式,也可以与外部系统时钟信号同步,为设计提供了极大的灵活性。在CT引脚和Discharge引脚之间加入一个电阻就可以实现对死区时间的调节功能。由于SG3525内部集成了启动电路,因此只需要一个外接定时电容。 SG3525的启动接入端(引脚8)上通常接一个5 的启动电容。上电过程中,由于电容两端的电压不能突变,因此与启动电容接入端相连的PWM比较器反向输入端处于低电平,PWM比较器输出高电平。此时,PWM锁存器的输出也为高电平,该高电平通过两个或非门加到输出晶体管上,使之无法导通。只有启动电容充电至其上的电压使引脚
14、8处于高电平时,SG3525才开始工作。由于实际中,基准电压通常是接在误差放大器的同相输入端上,而输出电压的采样电压则加在误差放大器的反相输入端上。当输出电压因输入电压的升高或负载的变化而升高时,误差放大器的输出将减小,这将导致PWM比较器输出为正的时间变长,PWM锁存器输出高电平的时间也变长,因此输出晶体管的导通时间将最终变短,从而使输出电压回落到额定值,实现了稳态。反之亦然。 外接关断信号对输出级和启动电路都起作用。当Shutdown(引脚10)上的信号为高电平时,PWM锁存器将立即动作,禁止SG3525的输出,同时,启动电容将开始放电。如果该高电平持续,启动电容将充分放电,直到关断信号结
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- PWM 控制 直流电机 调速 21
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内