虚功原理和位移计算.ppt
《虚功原理和位移计算.ppt》由会员分享,可在线阅读,更多相关《虚功原理和位移计算.ppt(67页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、A位移位移转角位移转角位移线位移线位移A A点线位移点线位移点线位移点线位移A A点水平位移点水平位移点水平位移点水平位移A A点竖向位移点竖向位移点竖向位移点竖向位移A A截面转角截面转角截面转角截面转角P位移位移转角位移转角位移线位移线位移A A点水平位移点水平位移点水平位移点水平位移A A截面转角截面转角截面转角截面转角PPB B点水平位移点水平位移点水平位移点水平位移B B截面转角截面转角截面转角截面转角相对线位移相对线位移相对角位移相对角位移AP引起结构位移的原因引起结构位移的原因制造误差制造误差 等等荷载荷载温度温度改变改变支座移动支座移动还有什么原还有什么原因会使结构产因会使结构
2、产生位移生位移?为什么要计算为什么要计算位移位移?铁路工程技术规范规定铁路工程技术规范规定:(1)刚度要求刚度要求在工程上,吊车梁允许的挠度在工程上,吊车梁允许的挠度 1/600 跨度;跨度;桥梁在竖向活载下,钢板桥梁和钢桁梁桥梁在竖向活载下,钢板桥梁和钢桁梁最大挠度最大挠度 1/700 和和1/900跨度跨度高层建筑的最大位移高层建筑的最大位移 1/1000 高度。高度。最大层间位移最大层间位移 1/800 层高。层高。(2)超静定、动力和稳定计算超静定、动力和稳定计算(3)施工要求)施工要求(3)理想联结)理想联结(Ideal Constraint)。叠加原理适用叠加原理适用(princi
3、ple of superposition)(1)线弹性线弹性(Linear Elastic),(2)小变形小变形(Small Deformation),单位荷载法单位荷载法(Dummy-Unit Load Method)功:力对物体作用的累计效果的度量功:力对物体作用的累计效果的度量功:力对物体作用的累计效果的度量功:力对物体作用的累计效果的度量 功功功功=力力力作用点沿力方向上的位移力作用点沿力方向上的位移实功:实功:实功:实功:力在自身所产生的位移上所作的功力在自身所产生的位移上所作的功虚功:虚功:虚功:虚功:力在非自身所产生的位移上所作的功力在非自身所产生的位移上所作的功力状态力状态位移
4、状态位移状态(虚力状态)(虚位移状态)注意:注意:注意:注意:(1)属)属同一同一体系;体系;(2)均为可能状态。即位移)均为可能状态。即位移 应满足应满足变形协调条件变形协调条件;力状态应满足力状态应满足平衡条件平衡条件。(3)位移状态与力状态)位移状态与力状态完全无关完全无关;一个力系作的总虚功一个力系作的总虚功一个力系作的总虚功一个力系作的总虚功 W=P W=P P-P-广义力广义力广义力广义力;-广义位移广义位移广义位移广义位移例例例例:1)1)作虚功的力系为一个集中力作虚功的力系为一个集中力作虚功的力系为一个集中力作虚功的力系为一个集中力2)2)作虚功的力系为一个集中力偶作虚功的力系
5、为一个集中力偶作虚功的力系为一个集中力偶作虚功的力系为一个集中力偶3)3)作虚功的力系为两个等值作虚功的力系为两个等值作虚功的力系为两个等值作虚功的力系为两个等值 反向的集中力偶反向的集中力偶反向的集中力偶反向的集中力偶4)4)作虚功的力系为两个等值作虚功的力系为两个等值作虚功的力系为两个等值作虚功的力系为两个等值 反向的集中力反向的集中力反向的集中力反向的集中力(1)刚体系的虚位移)刚体系的虚位移(功功)原理原理 去掉约束而代以相应的反去掉约束而代以相应的反力,该反力便可看成外力。力,该反力便可看成外力。则有:刚体系处于平衡的必则有:刚体系处于平衡的必要和充分条件是:要和充分条件是:对于任何
6、对于任何可能可能的的虚位移,作用于刚虚位移,作用于刚体系的所有外力所体系的所有外力所做虚功之和为零。做虚功之和为零。P23/2原理的表述:原理的表述:任何一个处于平衡状态的变形体,当任何一个处于平衡状态的变形体,当发生任意一个虚位移时,变形体所受外力发生任意一个虚位移时,变形体所受外力在虚位移上所作的总虚功在虚位移上所作的总虚功We,恒等于变,恒等于变形体各微段外力在微段变形位移上作的虚形体各微段外力在微段变形位移上作的虚功之和功之和Wi。也即恒有如下虚功方程成立。也即恒有如下虚功方程成立We=Wi(2)变形体的虚功原理)变形体的虚功原理 任何一个处于平衡状态的变形体,当发生任意一个虚任何一个
7、处于平衡状态的变形体,当发生任意一个虚位移时,变形体所受外力在虚位移上所作的总虚功位移时,变形体所受外力在虚位移上所作的总虚功We,恒恒等于变形体各等于变形体各微段外力微段外力在微段在微段变形位移变形位移上作的虚功之和上作的虚功之和Wi。变形体虚功原理的证明变形体虚功原理的证明:1.1.利用变形连续性条件计算利用变形连续性条件计算 所有微段的外力虚功之和所有微段的外力虚功之和 W微段外力分微段外力分为两部分为两部分体系外力体系外力相互作用力相互作用力微段外力功微段外力功分为两部分分为两部分体系外力功体系外力功d dWe相互作用力功相互作用力功d dWn微段外力功微段外力功 d dW=d dWe
8、+d+dWn所有微段的外力功之和所有微段的外力功之和:W=d dWe+d dWn=d dWe=We2.2.利用平衡条件条件计算利用平衡条件条件计算 所有微段的外力虚功之和所有微段的外力虚功之和 W微段外力功微段外力功分为两部分分为两部分在刚体位移上的功在刚体位移上的功d dWg在变形位移上的功在变形位移上的功d dWi微段外力功微段外力功 d dW=d dWg+d+dWi所有微段的外力功之和所有微段的外力功之和:W=d dWi=Wi微段位移分微段位移分为两部分为两部分刚体位移刚体位移变形位移变形位移故有故有We=Wi成立。成立。任何一个处于平衡状态的变形体,当发生任意一个虚任何一个处于平衡状态
9、的变形体,当发生任意一个虚位移时,变形体所受外力在虚位移上所作的总虚功位移时,变形体所受外力在虚位移上所作的总虚功We,恒恒等于变形体各等于变形体各微段外力微段外力在微段在微段变形位移变形位移上作的虚功之和上作的虚功之和Wi。变形体虚功原理的证明变形体虚功原理的证明:1.1.利用变形连续性条件计算利用变形连续性条件计算 所有微段的外力虚功之和所有微段的外力虚功之和 W微段外力分微段外力分为两部分为两部分体系外力体系外力相互作用力相互作用力微段外力功微段外力功分为两部分分为两部分体系外力功体系外力功d dWe相互作用力功相互作用力功d dWn微段外力功微段外力功 d dW=d dWe+d+dWn
10、所有微段的外力功之和所有微段的外力功之和:W=d dWe+d dWn=d dWe=We2.2.利用平衡条件条件计算利用平衡条件条件计算 所有微段的外力虚功之和所有微段的外力虚功之和 W微段外力功微段外力功分为两部分分为两部分在刚体位移上的功在刚体位移上的功d dWg在变形位移上的功在变形位移上的功d dWi微段外力功微段外力功 d dW=d dWg+d+dWi所有微段的外力功之和所有微段的外力功之和:W=d dWi=Wi微段位移分微段位移分为两部分为两部分刚体位移刚体位移变形位移变形位移故有故有We=Wi成立。成立。几个问题几个问题:1.虚功原理里存在两个状态:虚功原理里存在两个状态:力状态必
11、须满足平衡条件;位移状态必须满足协调力状态必须满足平衡条件;位移状态必须满足协调条件。因此原理仅是条件。因此原理仅是必要性命题必要性命题。2.原理的证明表明原理的证明表明:原理适用于原理适用于任何任何(线性和非线性线性和非线性)的的变形体变形体,适用于,适用于任何结构任何结构。3.原理可有两种应用:原理可有两种应用:实际待分析的平衡力状态,虚设的协调位移状态,实际待分析的平衡力状态,虚设的协调位移状态,将将平衡问题化为几何问题来求解平衡问题化为几何问题来求解。实际待分析的协调位移状态,虚设的平衡力状态,实际待分析的协调位移状态,虚设的平衡力状态,将将位移分析化为平衡问题来求解位移分析化为平衡问
12、题来求解。Wi 的计算的计算:Wi=N+Q+Mds微段外力微段外力:微段变形可看成由如下几部分组成微段变形可看成由如下几部分组成:(4)变形体虚功方程的展开式)变形体虚功方程的展开式微段剪切微段剪切微段拉伸微段拉伸微段弯曲微段弯曲对于直杆体系,变形互不耦连,略去高阶微量,有对于直杆体系,变形互不耦连,略去高阶微量,有:We=N+Q+MdsWi 的计算的计算:微段外力微段外力:(4)变形体虚功方程的展开式)变形体虚功方程的展开式We=N+Q+Mds对于刚体,对于刚体,、均为零均为零We=0这就是刚体虚功原理。刚体虚功原理是变形这就是刚体虚功原理。刚体虚功原理是变形体虚功原理的一个特例。体虚功原理
13、的一个特例。We=P=N+Q+Mds力状态位移状态 单位荷载法单位荷载法(Dummy-Unit Load Method)它是它是 Maxwell,1864和和Mohr,1874提出,故也称为提出,故也称为Maxwell-Mohr Method一一.单位荷载法单位荷载法求求k点竖向位移点竖向位移.由变形体虚功方程由变形体虚功方程:变形协调的位移状态(i)平衡的力状态(P)We=Wi We=P iP=iP 解:首先构造出相应解:首先构造出相应的虚设力状态。即,的虚设力状态。即,在拟求位移之点(在拟求位移之点(C点)沿拟求位移方向点)沿拟求位移方向(竖向)设置(竖向)设置单位荷单位荷载载。We=P=
14、N+Q+Mds力状态位移状态变形协调的位移状态(P)平衡的力状态(i)We=Wi We=iP 适用于各种杆件体系适用于各种杆件体系(线性线性,非线性非线性).一一.单位荷载法单位荷载法求求k点竖向位移点竖向位移.变形协调的位移状态(p)平衡的力状态(i)-适用于各种杆件体系适用于各种杆件体系(线性线性,非线性非线性).对于由对于由线弹性线弹性直杆直杆组成的结构,有:组成的结构,有:适用于线弹性适用于线弹性直杆体系直杆体系,例例 1:已知图示粱的:已知图示粱的E、G,求求A点的竖向位移。点的竖向位移。解:构造虚设单位力状态解:构造虚设单位力状态.l 对于细长杆对于细长杆,剪切变形剪切变形对位移的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 虚功 原理 位移 计算
限制150内