企业信用评级模型培训资料.docx
《企业信用评级模型培训资料.docx》由会员分享,可在线阅读,更多相关《企业信用评级模型培训资料.docx(64页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、企业信用评级模摘要 社会信用体系是市场经济体制中的重要体系。当前,社会中商业欺诈,制假售假,非法集资等现象屡禁不止,这些社会信用问题归根到底都是企业信用的问题,因此,科学、合理、公正、权威的企业信用评级技术是当前紧要的任务。本文通过研究研究国内外企业信用评价方法,构建了一个企业信用评价平台。该平台提供了信用评价,信用等级,信用反馈等功能,是一个功能非常完备的信用评价平台。企业信用评级模型是评价企业信用等级的有效工具,随着全世界债券市场的迅猛发展、抵押品价值降低及其波动性增加,该模型将会得到更为广泛的关注,并将为我国各公司企业运用数学模型度量企业信用评级提供了重要参考意义。关键词:数学模型 企业
2、信用等级 企业信用评级模型 信用评价AbstractThe social credit system is an important system of market economy system. At present, commercial fraud in the society of counterfeit goods, the phenomenon such as illegal fund-raising, the social credit problems in the final analysis are enterprise credit problems, therefor
3、e, scientific, reasonable, fair and authority of enterprise credit rating technology is the current urgent task.Through research the enterprise credit evaluation methods both at home and abroad, this paper builds a enterprise credit evaluation, credit rating, credit feedback, and other function, is
4、a very complete credit evaluation platform. Enterprise credit rating model is an effective tool for evaluation of enterprise credit rating with the rapid development of bond markets around the world the value of collateral reduces and its volatility increases, the model will be more widespread atten
5、tion, and the mathematical model for the companies in our country enterprise use metric enterprise credit rating provides an important reference significance.Key words: mathematical model Enterprise credit rating Enterprise credit rating model Credit evaluation目录摘要Abstract第一章 绪论1 1.1 选题背景和意义1 1.2 国内
6、外文献综述2 1.2.1 国外研究现状2 1.2.2 国内研究现状51.3我国研究现状及存在的问题9第二章 信用评级主要方法与模型综述102.1 专家评估法及其优缺点102.2 财务比率分析法及其优缺点122.3 多元判别分析(MDA ) 及其优缺点142.4 logistic分析及其优缺点152.5 非参数方法172.5.1 聚类分析及其优缺点172.5.2 K近邻判别及其优缺点192.6 Z模型和Zeta模型及其优缺点192.7 基于投影寻踪和最优分割及其优缺点212.8 模糊综合评判法及其优缺点262.8.1 确定评语集272.8. 2 确定指标权重集282.8.3 确定评判矩阵282.
7、8.4 模糊综合评判292.8.5 模糊合成算子的选择312.9 遗传算法优化神经网络及其优缺点342.10 基于有序分类和支持向量机方法及其优缺点392.10.1 有序分类问题与内置空间法392.11 C4.5算法建立决策树模型及其优缺点422.12 kmv公司的kmv模型及其优缺点442.13 j.p摩根的credit metrics模型及其优缺点452.14 麦肯锡公司的credit portfolio view模型及其优缺点462.15 瑞士信贷银行的credit risk+模型及其优缺点46第三章 现代模型在中国应用的缺陷性及改进措施473.1对于现代模型的运用还处于尝试阶段473.
8、2 改进措施48第四章 对我国企业信用评级工作的建议50参考文献52.56第一章绪论1.1项目背景及意义社会信用体系是市场经济体制中的重要体系。建立社会信用体系,是完善我国社会主义市场经济体制的客观需要,是整顿和规范市场经济秩序的治本之策。当前,社会中商业欺诈,制假售假,非法集资等现象屡禁不止,这些问题的源泉归根到底是社会信用出现了问题,因此加快建设社会信用体系,打击各种违法行为,处理各种信用问题不仅维护了正常的社会经济秩序,保护了群众权益,也进一步推进了政府更好的履行其公共服务、经济调节、以及市场监管的职能。市场经济条件下,社会信用体系由个人信用、政府信用、企业信用融合而成。其中个人信用是社
9、会信用的基础;政府信用是社会信用的基石;而企业信用是最关键,最活跃和最具影响力的。因为企业信用不仅在一般交易市场被多方重视更重要的是在金融市场被投资人或者贷款人所关注。随着市场经济的不断发展,企业信用将成为合作与交易的先决条件,因此当前我国企业信用体系建设是整个社会信用体系建设的重点。当前我国企业信用体系建设中存在的各种问题尽管表现形式各异,但从本质上讲,主要是企业信用信息的缺失,具体表现为企业信用信息的有效供给和有效需求的双重不足。一方面,由于企业体系建设滞后,使资信评估机构难以全面、准确、快速地获得企业信用信息,并通过评级技术确定其信用等级,即资信评估机构难以有效地生产出能够满足市场需求的
10、高品质的信用信息产品,形成有效供给。另一方面,由于缺乏高品质的,能够满足市场需要的信用信息产品,投资者或者企业在进行投资或参与市场交易时,虽然对信用产品有需求,但不能转化为现实需要,即潜在的需求不能转化为有效需求。正是这种有效供给与有效需求之间的矛盾,互相制约,恶性循环,严重制约了我国信用市场的健康有序发展。因此当前我们迫切的主要任务就是建立一套完整,可靠的企业信用体系,而企业信用体系的核心就是要有一种企业信用等级必须能够客观公正地反映企业信用的真实状况。因此,科学、合理、公正、权威的企业信用评级技术是成功地实施企业信用制度的关键所在,也是企业信用体系的紧要研究课题。1.2国内外文献综述1.2
11、.1国外信用评级研究概况国外信用评级的研究始于上世纪三十年代,分成四个阶段。第一阶段主要建模方法是基于传统的比例分析方法,如“SC , LAPP”和财务比率分析方法。第二阶段始于上世纪六十年代,这一阶段的主要方法包括多元判别分析法(MDA ),Logistic回归模型以及聚类分析等非参数方法。该阶段中关于财务信息与信用风险关系的研究主要以线性判别为主,在线性判别模型中又以Beaver的单变量模型和Altman的多元模型影响最为广泛。Beaver对30多个企业的财务比率进行了研究,运用单变量分析法对企业的违约进行研究,通过对样木的分析找到破产企业与非破产企业单个财务比率的临界点,并利用该临界点对
12、破产企业和非破产企业进行预测。Altman于1968年对“家美国制造业企业的经营情况进行了典型判别分析,提出了著名的Z-Score模型,1977年Altman本人又对Z-Score模型进行了修正和扩展,建立了ZETA评分模型。许多金融机构用它预测信用风险,并取得了一定的成效。Z-Score模型和ZETA模型,都是以会计资料为基础的多变量信用评分模型,由其计算的Z值可以反映贷款企业在一定时期内的信用状况(违约与不违约、破产与不破产),简单实用,很快成为了预测企业违约或破产的主流分析方法,被应用到世界上超过25个国家。类似的研究还包括Horrigan, Pogue和Soldofsky, West,
13、 Horton等。但是多变量区别分析法有着严格的假设条件,如多元正态分布、等协方差矩阵等等,针对这些问题,Ohlson构建了假设条件较为宽松的Logistic识别模型,并将其应用于商业银行信用风险评估领域,Madalla采用Logistic模型区别违约与非违约贷款申请人的信用状况,Libby首次将主成份分析方法引入判别模型以克服变量多重共线性的问题。Zmijewski则引入Probit模型进行类似的研究。 由于统计模型有着比较严格的假设,同时线性技术又无法区分出随机噪声和非线性关系。因此依托迅速发展的计算机信息技术,运用数据挖掘方法进行建模在近年来的信用风险评估领域得到了广泛的关注。也就是评级
14、模型发展的第三阶段。该阶段的主要方法是人工智能方法,主要建模方法包括专家系统,人工神经网络、决策树算法、支持向量机和遗传算法等。Odom首次将神经网络引入企业破产领域,用BP神经网络预测了财务困境,结果显示神经网络模型优于判别分析模型。随后Tam和Kiang, Trippi和Turban, Coats和Fant, Bell等也都采用神经网络模型来对公司和银行的财务危机进行了预测,取得了一定的效果。Katiuscia Manzoni 利用神经网络对欧洲债券的信用评级和降级概率进行了研究。Makowsik是第一批倡导将决策树方法应用于信用评估的学者之一,之后Carter, Catlett以及Boy
15、leet al也对决策树方法用于信用评估的结果进行了分析。Tae K. S, Namsik C和Gunhee L.三人则应用决策树技术研究破产预测。Schebesch KB和Sleeking R用由一组高维数据组成的向量描述申请者,从而利用非线性SVM对信用卡申请者进行评级。Yong-Chan Lee使用支持向量机方法预测公司的信用等级取得了较好的结果。Sheng-Tun Lia, Weissor Shiue, Meng-Huah Huang利用支持向量技术对个人贷款信用评估问题进行了研究。相对方法研究而一言,更多的研究集中在基于不同方法、不同类型模型之间的预测效果比较,这一部分的研究文献非常
16、丰富。Altman等发现神经网络方法有时优于线性判别方法,但由于神经网络有时过度训练产生了不合理的权重,从总体上看线性判别方法要优于神经网络方法。Altman在对神经网络法和判别分析法的比较研究中得出结论“神经网络分析方法在信用风险识别和预测中的应用,并没有实质性的优于线性判别模型”。Coffman对决策树方法和判别分析进行了比较,认为两者各有千秋。Altman和Kao在现金流/总负债、保留盈余/总资产、总负债/总资产、现金流/销售收入等指标下分别建立了较高复杂度的分类树和较低复杂度分类树,与DA比较优劣,表明分类树是一种很有前途的方法。Martinelli E, Carvalho A D,
17、Rezende S, Matias A对决策树和神经网络模型进行了对比研究。Hui-Chung Yeh等运用LDA,决策树,神经网络,以及LDA与神经网络相结合的模型分别对同一数据集进行了信用风险评估研究,结果显示决策树在四种方法中具有最高的分类准确率,线性判别分析准确率最低。第四阶段始于上世纪末,这一阶段主要是采用对信用风险组合计量的方法,主要模型有1995年KMV公司提出的信用监测模型;1997年J.P.Morgan银行提出的信用度量术模型,同期麦肯锡公司提出的Credit Portfolio View模型; 以及之后穆迪评级公司提出的CreditCalc+模型,标准普尔提出的Credit
18、Model和CreditPro模型等。1.2.2国内信用评级研究概况国内信用风险评估方法研究主要是引进国外模型或在其基础上进行改进,方法的进展路线与国外大致相同,典型的研究成果如下:陈静首次在国内运用统计方法和计量模型进行财务困境预警研究。陈瑜应用一元和多元分析对135家上市公司的财务状况进行了分类和预测。卢声、任若恩等利用Fisher判别分析法对我国上市公司的财务困境进行研究。施锡锉等人采用典型判别分析对1999年到2000年9月间的128家上市公司进行了经营失败的预测研究。梁琪运用主成份分析与判别分析相结合的方法预测企业财务困境。姜天和韩立岩以6个财务指标作为输入变量,使用Logitic模
19、型建立了我国上市公司财务困境预测模型。唐春阳、冯宗宪运用多元线性回归方法,利用逐步回归得到的5个指标(分别是资产负债率、成木费用利润率、主营业务利润率、全部资本化比率行业债务结构) 得到一个简明的企业违约率测度模型。郑建平采用概率统计方法构建了个人信用评分模型,康世赢采用关联分析法和模糊综合评价的方法对个人信用评估进行了研究,孙建政运用Logistic方法对个人信用评估模型进行了研究。张爱民等在借鉴Altman的多元Z值判定模型的基础上,采用主成分分析的方法建立了财务预警模型;杨淑娥和徐伟刚采用主成分分析法,建立了Y分数财务预警系统。庞素琳对106家上市公司进行两类模式分类,这两类模式是指按照
20、公司的经营状况分为“差”和“正常”两个小组。对每一家上市公司,考虑其经营状况的4个主要财务指标:每股收益、每股净资产、净资产收益率和每股现金流量。仿真结果表明,Logistic回归信用评价模型对总体106个样本,判别准确率达到99.06%。宋冬梅,沈友娣也通过运用Logistic模型评价上市公司信用风险,也取得了较好的效果。樊锰汪媛雏等人从中小企业信用评级方法的比较和选择入手,以AHP分析法为核心,构建多级模糊综合评价模型,对中小企业信用状况做出评价。张目,周宗放提出一种基于投影寻踪和最优分割的企业信用评级模型。该模型运用投影寻踪对样本企业进行信用综合评分,将信用综合得分由大到小排序,生成有序
21、样品序列;利用最优分割法对有序样品进行聚类,得出明确的聚类结果;将最优分割点对应的信用综合得分作为划分信用等级的阈值,从而实现对样木企业的信用评级。人工智能方法中,王春峰等是国内较早采用神经网络模型预测企业信用风险状况的学者。庞素琳等人对基于BP算法的信用风险评价模型进行了研究。陈雄华等、章忠志等也都各自利用神经网络构建了商业银行信用风险评估模型取得较好效果。吴冲等、梁裸和吴德胜分别利用模糊神经网络对我国企业信用风险作了实证研究和分析。杨淑娥等构建了BP神经网络模型对上市公司的财务状况进行预测。李玉霜,张维将分类树应用于解决从业人员在进行贷款5分类过程中分析判断能力欠缺的问题中,实证分析表明决
22、策树方法比线性判别分析方法的准确率高。张维,李玉霜对基于分类树的商业银行信贷分类的数据处理问题进行了研究。姚靠华姚靠华等以上市公司作为研究对象,选取反映上市公司盈利能力、偿债能力、营运能力、成长能力和公司规模的17个财务指标,区别于传统的建模方法,应用决策树技术建立了中国上市公司的财务困境预警系统。实证结果表明该系统具有较好的预测性,在该领域有着良好的应用前景。吴德胜等人利用遗传算法辅助优化神经网络训练策略,建立了基于进化神经网络的信用评估模型。叶中行,余敏杰构建了一种分类树和遗传算法相结合的信用风险评估方法,先用分类树方法按照定性变量分类,然后在每个叶结点上运用遗传算法按照定量变量分类。在个
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 企业信用 评级 模型 培训资料
限制150内