计量经济学(英文)evig.pptx
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《计量经济学(英文)evig.pptx》由会员分享,可在线阅读,更多相关《计量经济学(英文)evig.pptx(413页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Lecture OneMethodologyofEconometrics1立论?结论?立论?结论?v立论:要求给出求论的路径。v结论:要求说明结论的来源。v自以为是的东西并不见得是真v我们不是上帝!2我们的习惯是这样的吗?我们的习惯是这样的吗?v结论来自感觉(象上帝)v宏观思考(象战略家)v习惯地提出政策建议(象顾问)v得争取把一个个的大、小问题搞明白再说吧!3Mainstream Analysis ApproachesNormativeAnalysisPositiveAnalysis(empiricalanalysis)4The Writer D.N.GujarativProfessorof
2、econometricsattheMilitaryAcademyatWestPointvMasterofCommercevMBAvEditorialrefereevAuthorvVisitingProfessor5WhatisEconometricsvEmpiricalsupporttothemodelsvQuantitativeanalysisofactualeconomicphenomenavSocialscienceinwhichthetoolsofeconomictheory,mathematics,andstatisticalinferenceareappliedtotheanaly
3、sis.vPositivehelpvEconomictheory_measurements6MethodologyofEconometricsvStatementoftheoryorhypothesisvObtainingthedatavSpecificationofthemathematicalmodelvSpecificationoftheeconometricmodelvEstimationoftheparametersoftheeconometricmodelvHypothesistestingvForecastingorpredictionvUsingthemodelforcontr
4、olorpolicypurposes7Statement of Theory or HypothesisvPostulate(givesomeexamples)vStatementvNote:hypothesisisnotthesameasanassumption8Obtaining the DatavNaturevSourcesvLimitations9Types of DataTimeseriesdata:quantitative,qualitative(dummyvariable)(SATIONARY)Cross-sectionaldata:(HETEROGENEITY)Pooledda
5、ta:(Paneldata)10Sources11Accuracy of Data vNon-experimentalinnaturevRound-offsandapproximationsvNon-responsevSelectivitybiasvAggregatelevelvConfidentialityvTheresultsofresearchareonlyasgoodthequalityofthedata.12Specification of the mathematical modelvYi=b1+b2*Xi0b2sampleparameter-estimate-estimatord
6、istribution-populationparameter-populationcharacteristicsvConfirmationorrefutationofeconomictheoriesonthebasisofsampleevidencevThebasementisstatisticalinference(Hypothesistesting)20Forecasting or PredictionvHypothesisortheorybeconfirmedvKnownorpredictorvariableXvPredictthefuturevaluesofthedependent2
7、1Use of the Model for Control or Policy PurposesvControlvariableXvTargetvariableYvYi=b1+b2*XivManipulatethecontrolvariableXtoproducethedesiredlevelofthetargetvariableY22Anatomy of Classical Econometric ModelingvEconomictheoryvMathematicalmodeloftheoryvEconometricmodeloftheoryvDatavEstimationofeconom
8、etricmodelvHypothesistestingvForecastingorpredictionvUsingthemodelforcontrolorpolicypurposes23第第1章章计计量量经济经济学研究的方法学研究的方法论论4第第2-3章章基本基本统计统计概念,概率分布概念,概率分布4第第4章章估估计计与假与假设设4第第5章章双双变变量模型的基本思想量模型的基本思想4第第6章章双双变变量模型的假量模型的假设检验设检验4第第7章章多元回多元回归归:估:估计计与假与假设检验设检验4第第8章章回回归归方程的函数形式方程的函数形式4第第9章章虚虚拟变拟变量的回量的回归归模型模型4第第
9、10章章多重共多重共线线性性4第第11章章异方差性异方差性4第第12章章自相关性自相关性4第第13章章模型模型选择选择:标标准与准与检验检验4实验实验实验实验1-6624Please Give Some SuggestionsZ3-W163.COM027-62082852Thankyou.25A Review of Some Statistical ConceptsLecture Two26Sample space、Sample points、EventsvPopulationisthesetofallpossibleoutcomesofrandomexperiment(samplespace
10、)vSample pointistheeachmemberofthissamplespacevEventisasubsetofthesamplespace27Probability and Random VariablesvP(A)probability(pr;p;pro)vXrandomvariable(rv)vXthevalueofarandomvariablev0=P(A)=0,29Cumulative Distribution FunctionCDFF(X)=P(X=x)(discrete)=(continuous)30CDFofDiscreteVRPDFCDFX times of f
11、ace upf(x)(PDF)Value of X f(x)(CDF)01/16X=01/1614/16X=15/1626/16X=211/1634/16X=315/1641/16X=4131CDF11/165/1611/1615/161X234032CDFofContinuousVRPDFCDFValue of X timesf(x)PDF)Value of X timesf(x)(CDF)0=X11/16X=01/161=X24/16X=15/162=X36/16X=211/163=X44/16X=315/164=X51/16X0,symmetricalS=0orleftS2,itsvar
12、ianceis70An ExamplevGiven k1=10 and k2=8,what is theprobabilityofobtaininganFvalue(a)of3.4orgreater;(b)of5.8orgreater?vTheseprobabilitiesare(a)approximately0.05;(b)approximately0.01.71Relationships1.If the denominator df,k2,is fairly large,thefollowingrelationshipholds:2.3.Largedf,thet,chisquare,and
13、Fdistributionsapproachthenormaldistribution,thesedistributions are known as the distributionsrelatedtothenormaldistribution.72 An ExamplevLet k1=20 and k2=120.The 5 percentcritical F value for these df is 1.48Therefore,k1F=(20)*(1.48)=29.6.vFrom the chi-square distribution for 20 df,the 5 percent cr
14、itical chi-square value isabout31.41.73Lecture 3(2)Estimation and Inference74ESTIMATIONvAssumethatarandomvariableXfollowsaparticularprobabilitydistributionbutdonotknowthevalue(s)oftheparameter(s)ofthedistribution.vifXfollowsthenormaldistribution,wemaywanttoknowthevalueofitstwoparameters,namely,theme
15、anandthevariance.75Estimate the UnknownsvWehavearandomsampleofsizenfromtheknownprobabilitydistribution;vUsethesampledatatoestimatetheunknownprobabilitydistribution;(non-pa)vUsethesampledatatoestimatetheunknownparameters.(pa)76Two CategoriesPointestimationIntervalestimation.77Point EstimationvLetXbea
16、rvwithPDFf(x;),istheparameterofthedistribution(forsimplicityonlyoneunknownparameter).vAssume that we know the theoreticalPDF,suchasthetdistributiondonotknowthevalueof.wedrawarandomsample of size n from this known thisPDFandthendevelopafunctionofthesamplevalues78Estimator or Estimatevprovidesusanesti
17、mateofthetrue.is known as a statistic,or an estimator,vA particular numerical value taken by the estimator is known as an estimate.can be treated as a random variable.provides us with a rule,or formula,that tells us how we may estimate the true.79An ExamplevSamplemeanisanestimatorofthetruemeanvalue,
18、.Ifinaspecificcase=50,thisprovidesanestimateof.Theestimator obtainedisknownasapointestimatorbecauseitprovidesonlyasingle(point)estimateof.80Interval EstimationDefofintervalestimation:vweobtaintwoestimatesof,byconstructingtwoestimators1(x1,x2,xn)and2(x1,x2,xn),andsaywithsomeconfidence(i.e.,probabilit
19、y)thattheintervalbetween1and2includesthetrue.vweprovidearangeofpossiblevalueswithinwhichthetrue maylie.81Key conepts vSampling,Probability distribution,An estimator.vX is normally distributed,then thesamplemeanisalsonormallydistributedwithmean=(thetruemean)andvariance=2/n,N(,2).vprobabilityis95%82In
20、tervalEstimationvMoregenerally,inintervalestimationweconstructtwoestimatorsand,bothfunctionsofthesampleXvalues,suchthatvTheintervalisknownasa confidence interval ofsize1for,v1beingknownastheconfidence coefficient,v isknownasthelevel of significance.83An ExamplevSupposethatthedistributionofheightofme
21、ninapopulationisnormallydistributedwithmean=and=2.5.vAsampleof100mendrawnrandomlyfromthispopulationhadanaverageheightof67.Establisha95%confidenceintervalforthemeanheight(=)inthepopulationasawhole.84SolutionvAsnoted,N(,2/n),whichinthiscasebecomesN(,2.52/100).v95%confidenceintervalas66.5167.4985OLS an
22、d MLvThereareseveralmethodsofobtainingpointestimators,thebestknownbeingthemethod of Ordinary leastsquares andthe method of maximumlikelihood(ML).vThedesirablestatisticalpropertiesfallintotwocategories:small-sample,andlargesample,orasymptotic.86SmallSample PropertiesvUnbiasedness.Anestimatorissaidtob
23、ean unbiased estimator of if the expectedvalueofisequaltothetrue;thatis,vE()=0vIf this equality does not hold,then theestimatorissaidtobebiased,andthebiasiscalculatedasvBias()=E()87Minimum VariancevMinimum variance.1issaidtobeaminimum-varianceestimatorofifthevarianceof1 issmallerthanoratmostequaltot
24、hevarianceof2,whichisanyotherestimatorof。88EfficientvBest unbiased,or efficient,estimator.If1and2 are twounbiased estimators of,and are twounbiased estimators of 1,and thevarianceof1issmallerthanoratmostequaltothevarianceof2,then1isa minimumvariance unbiased,orbest unbiased,orefficient,estimator.89L
25、inearity.vAn estimatoris said to be a linearestimatorofifitisalinearfunctionofthesample observations。Thus,the samplemeandefinedas90BLUEvBest linear unbiased estimator(BLUE)。If is linear,is unbiased,and hasminimumvarianceintheclassofalllinearunbiasedestimatorsof,thenitiscalledabestlinearunbiasedestim
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 计量 经济学 英文 evig
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内