【华师版】二次函数的应用-课件1.pptx
《【华师版】二次函数的应用-课件1.pptx》由会员分享,可在线阅读,更多相关《【华师版】二次函数的应用-课件1.pptx(11页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、 二次函数的应用二次函数的应用1 1、二次函数、二次函数y=axy=ax2 2+bx+c(a0)+bx+c(a0)何时有最大值或何时有最大值或最小值?最小值?2 2、如何求二次函数的最值?、如何求二次函数的最值?3 3、求下列函数的最大值或最小值:、求下列函数的最大值或最小值:y=xy=x2 2-4x+7 y=-5x-4x+7 y=-5x2 2+8x-1+8x-1配方法配方法公式法公式法配方法配方法公式法公式法给你长给你长6m的铝合金条,设问:的铝合金条,设问:你能用它制成一矩形窗框吗?你能用它制成一矩形窗框吗?怎样设计,窗框的怎样设计,窗框的透光面透光面积积最大?最大?给你长给你长6m的铝合
2、金条,设问:的铝合金条,设问:你能用它制成一矩形窗框吗?你能用它制成一矩形窗框吗?怎样设计,窗框的透光面积最大怎样设计,窗框的透光面积最大?x3-x(0 x3)解解:设宽为设宽为x米米,根据题意得根据题意得,则长为(则长为(3-x)米)米用长为用长为6m的铝合金条制成如图形状的铝合金条制成如图形状的矩形窗框,问窗框的宽和高各是多的矩形窗框,问窗框的宽和高各是多少米时,窗户的透光面积最大?最大少米时,窗户的透光面积最大?最大面积是多少?面积是多少?2 2、用长为、用长为8 8米米的铝合金制成如图窗框,一边靠的铝合金制成如图窗框,一边靠2m2m的墙,的墙,问窗框的宽和高各为多少米时,窗户的透光面积
3、最大?问窗框的宽和高各为多少米时,窗户的透光面积最大?最大面积是多少?最大面积是多少?解:设窗框的一边长为解:设窗框的一边长为x x米,米,x8-2x又令该窗框的透光面积为又令该窗框的透光面积为y y米,那么:米,那么:y=x(8y=x(82x)2x)即:即:y=y=2x2x2 28x8x则另一边的长为(则另一边的长为(8-2x)米,)米,合作探究合作探究小结:应用二次函数的性质解小结:应用二次函数的性质解决日常生活中的最值问题,一决日常生活中的最值问题,一般的步骤为:般的步骤为:把问题归结为二次函数问题(设自变量和函数);把问题归结为二次函数问题(设自变量和函数);在自变量的取值范围内求出最
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 华师版 二次 函数 应用 课件
限制150内