认识一元一次方程教学设计(共5篇).docx





《认识一元一次方程教学设计(共5篇).docx》由会员分享,可在线阅读,更多相关《认识一元一次方程教学设计(共5篇).docx(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、认识一元一次方程教学设计(共5篇)篇:认识一元一次方程(设计)北师大版七年级数学上册第五章5.1认识一元一次方程卫城中学罗艳琴一、教材分析1、教材的地位与作用认识一元一次方程是在学生学习了有理数的运算、代数式的基础上接触有关方程的知识,是中学阶段应用数学知识解决实际问题的开端,也是今后学习一次方程组、一元二次方程、分式方程解决实际问题的基础,是学生体会数学价值观、增强学数学、用数学意识的重要题材本课内容设计切合学生兴趣的问题情境,从而激发学生的好奇心和主动学习的欲望,主动探究情境中包含的等量关系,体会方程是刻画实际问题的一个有效的数学模型2、教学目标本节课依据新课程的基本理念和数学课程标准的基
2、础要求,数学教学不仅仅使学生掌握必备的基础知识和基本技能,更应培养学生的抽象思维和推理能力、培养学生的创新意识和实践能力、促进学生在情感态度和价值观等方面的发展,因此根据本节课在教材中的地位和作用,确定本节课的目标如下:知识技能:根据问题情境寻找等量关系,根据等量关系列出方程,能够分析归纳出一元一次方程的定义数学思考:本节课提取学生切身体会的例子,渗透了数学建模思想和归纳、化归等数学思想方法问题解决:能根据具体问题的数量关系列出方程并归纳出一元一次方程的定义,培养学生获取信息,分析问题,处理问题的能力情感态度:在探究新知识的活动中,培养学生学习数学的好奇心和求知欲,激发学生学数学、爱数学、用数
3、学的情感,同时通过小组合作增进师生情感3、教学重难点重点:建立一元一次方程的概念。难点:根据具体问题中的等量关系,列出一元一次方程,感受方程作为刻画现实世界有效模型的意义。二、学情分析七年级的学生好奇心强、注意力易分散、爱发表自己的见解、有比较强烈的自我发展意识,对与自己的直观经验相冲突的现象,教师只有进行诠释方可得到学生的认可,他们在小学已经习惯了列算式解应用题本节课在学生没有体会运用方程建模的优越性之前,只能通过比较算式法与方程解法的优劣来引出方程建模思想,提升学生运用方程建模的自觉性和实效性教学策略分析1、为了让学生参与到知识形成的全过程,本节课将采取“创设问题情境-自主探究-建立数学模
4、型-解释、应用与拓展”的过程以实际问题为主线贯穿整个教学,强调对具体问题的分析,抽象渗透数学建模思想,选用贴近学生生活和具有时代气息的问题、习题,激发学生的兴趣2、给学生提供探索和交流的空间,使整个数学活动生动活泼,是一个主动和富有个性的学习过程3、借助多媒体辅助教学,通过有色彩、有动感的画面,提高学生学习数学的兴趣,提高课堂效果四、教学过程七年级的学生好奇心强、注意力易分散,一方面要用生动、形象的图片来激发学生的学习兴趣,使他们的注意力始终集中在课堂上;另一方面要创造条件和机会,让学生发表见解,发挥学生学习的主动性,培养学生的团队精神,让学生从被动学到主动学、从个人学习到合作交流、从接受知识
5、到探索知识给学生一个问题,让他们自己去找答案;给学生一个条件,让他们自己去锻炼;给学生一点时间,让他们自己去安排;给学生一点空间,让他们自己往前走;给学生一个机会,让他们自己把握本着这种新理念,我将本节课设计成以下五个环节:一激发情趣,快乐学习通过刘谦变牌视频吸引学生的注意力和好奇心,并师生合作游戏:1一位同学从牌中抽出一张牌,展示给全班看,并用牌面数字乘2再加5报出得数,教师从中找出牌来2(课件展示)教师从牌中抽出一张牌,也用牌面数字乘2再加5得27,学生猜出牌面数字是“11”问题:你是怎么得到的?学生回答:方法1:(275)211;学生回答:方法2:设牌面数字为x,则2x527,得到x11
6、问题:两种方法得出的两个等式有什么区别?师生共同:像这样含有未知数的等式叫做方程,并指出判断方程应具备的两个条件:等式;含有未知数【设计意图】:当学生看到自己所学的知识与现实世界息息相关时,学生通常会更主动问题:刚才得出牌面数字是11,把x11代入方程2x527,左边的值与右边的值相等吗?(学生回答:相等)师生共同总结:使方程左右两边的值相等的未知数的值叫方程的解设计抢答题:x2是方程2x4的解吗?x3是方程2x18的解吗?【设计意图】:加深“方程的解”定义的理解,为今后解方程检验起到铺垫作用,同时抢答能活跃气氛二小组合作,探究学习情境一:小颖种了一株树苗,开始时树苗高为40厘米,栽种后每周树
7、苗长高约15厘米,大约几周后树苗长高到1米?(只列方程)问题:上面的问题中包含哪些已知量、未知量和等量关系?学生回答:已知量:数苗开始的高度、将来的高度、每周长高的高度。未知量:周数(长高的高度)等量关系:树苗开始的高度长高的高度树苗将达到的高度问题:等量关系中有已知量、未知量,未知量用什么表示呢?学生回答:字母x表示,即设x周后达到1米,则可列出方程:4015x100问题:根据情境列方程的关键是什么?一般步骤是什么?此问题学生不一定能回答到,教师引导回答,这是为后面环节做好铺垫【设计意图】:以问题串的形式出现,让学生体会到列方程的关键及一般步骤情境二:某种足球现价200元,比原价上涨了15%
8、,请问原价为多少元?(只列方程)学生小组合作讨论完成,并在学案上做出答案解答:设原价为x元,由题意得:(115%)x200【设计意图】:学生小组合作完成该题,让学生熟练列方程的一般步骤情境三:某长方形操场的周长是400m,长比宽之多50m,这个操场的长与宽分别是多少米(只列方程)如果设这个操场的宽为xm,那么长为(x+50)m,由此可得到方程:2(x+x+50)=400(课件展示)议一议:1、以上情境中,根据题意列出方程的关键是什么?一般步骤是什么?关键:找等量关系一般步骤:找等量关系;设未知数,用字母表示;列出方程【设计意图】:让学生体会到列方程的关键与一般步骤,不仅解决了本节的难点,也为今
9、后的学习奠定了基础5102、几个情境得到方程:2x527401x0x)(115%202(x+x+50)=400问:这几个方程的共同特征是什么?学生讨论归纳出一元一次方程的定义:在一个方程中只含有一个未知数(元),并且未知数的指数是1(次),这样的方程叫做一元一次方程引入课题:第五章一元一次方程5.1认识一元一次方程【设计意图】:学生通过讨论归纳出一元一次方程的定义,不仅能加深对一元一次方程定义的理解和掌握,也能培养学生的观察、归纳、总结的能力,至此也解决了本节课的重点三挑战自我,拓展学习一填空:在下列方程中:2x13;y22y10;2ab3;26y1;2x256;属于一元一次方程有;2方程3x
10、m250是一元一次方程,则代数式m_二根据条件,列方程:1某数x的相反数比它的2一个数的3大141与3的差等于最大的一位数73甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分.甲队与乙队一共比赛了10场,甲保持了不败的记录,一共得了22分.甲队胜了多少场?【设计意图】:通过练习巩固本节课重难点四归纳总结,收获学习1方程的概念与方程解的概念;2一元一次方程的概念;3列方程的一般步骤:(1)关键找等量关系;(2)设未知数,用字母表示;(3)列出方程.五布置作业,巩固学习1习题5.12请根据方程2x+3=21自己设计一道有实际背景的应用题;3思考题:代数之父丢番图的年龄1希
11、腊数学家丢番图(公元34世纪)的墓碑上记载着:“他生命的是幸福的童年;再活611了他生命的,两颊长起了细细的胡须;又度过了一生的,他结婚了;再过5年,他有127了儿子,感到很幸福;可是儿子只活了他全部年龄的一半;儿子死后,他在极度痛苦中度过了4年,与世长辞了。”则他的年龄是多少?【设计意图】:作业1的布置是为了巩固本节课的基础知识点;作业2的布置是让学生更好地发挥自己的想象,将数学应用到与自己相关的事件中去,将本节课的学习上升到更高的一个台阶;作业3的设计师针对学有余力的学生,不仅能提高他们的分析、解题能力,也是了解数学相关历史的一个机会!第2篇:认识一元一次方程教学设计1认识一元一次方程(一
12、)你几岁了一、教学目标1、在对实际问题情境的分析过程中感受方程模型的意义2、借助类比、归纳的方式概括一元一次方程的概念,并在概括的过程中体验归纳方法;3、使学生在分析实际问题情境的活动中体会数学与现实的密切联系。二、教学过程环节一:阅读章前图内容1:请一位同学阅读章前图中关于“丟番图”的故事。(大约1分钟)丢番图是古希腊数学家人们对他的生平事迹知道得很少,但流传着一篇墓志铭叙述了他的生平:坟中安葬着丢番图,多么令人惊讶,它忠实地记录了其所经历的人生旅程上帝赐予他的童年占六分之一,又过十二分之一他两颊长出了胡须,再过七分之一,点燃了新婚的蜡烛五年之后喜得贵子,可怜迟到的宁馨儿,享年仅及其父之半便
13、入黄泉悲伤只有用数学研究去弥补,又过四年,他也走完了人生的旅途。出自希腊诗文选第126题目的:通过阅读章前图中的故事,激发同学们探索丟番图年龄的兴趣,进而引导学生通过列方程解决问题,感受利用方程可以解决实际问题,感受方程是刻画现实世界有效地模型。效果:学生对丟番图的故事很感兴趣,有的学生提出问题:他的年龄是多少呢?教师借机也提出问题:用什么方法可以求解丟番图的年龄呢?紧接着呈现内容2.内容2:回答以下3个问题:(大约4分钟)1、你能找到题中的等量关系,列出方程吗?2、你对方程有什么认识?3、列方程解决实际问题的关键是什么?目的:第一个问题考查学生根据等量关系列方程的能力,对于解方程这里不做要求
14、。第二个问题意在鼓励学生用自己的语言对方程进行描述,锻炼学生的数学语言表达能力。第三个问题强调列方程解应用题的关键是:寻找等量关系。实际效果:第一个问题学生可以完成问题。如下:解:设丟番图的年龄为x岁,则:第二个问题学生的表述合理即可,教师可以用规范的语言再次强调:方程是刻画现实世界有效地模型。第三个问题学生回答较好。内容3:阅读学习目标:学习本章内容,你将感受方程是刻画现实生活中等量关系的有效模型。掌握等式的基本性质,能解一元一次方程。能用一元一次方程解决一些简单的实际问题。在探索一元一次方程解法的过程中,感受转化思想。目的:通过阅读学习目标,学生了解了本章知识的学习内容共有两部分:解一元一
15、次方程和能用一元一次方程解决一些简单的实际问题。学生对于本章知识的学习和数学思想有一个整体的概念。实际效果:学生通过阅读,目标明确了,学习更有针对性。尤其是认识了“转化思想”的重要性。环节二:自主阅读、学习内容:让学生阅读本节教材P132-P133随堂练习之前的内容。结合课本多以问题串的形式呈现内容的特点,粗读并完成书上的填空题。(大约10分钟)目的:通过读书的过程,首先让学生回忆起小学学过的等式的概念、方程的概念,对课文所设置的较简单又熟悉的实例中的各种量的关系分析清楚,找出等量关系,列出方程,体会不同类型的方程.实际效果:通常,多数学生能够分析教材实例中所蕴含的各种数量关系,并列出方程。教
16、学过程中需要注意学生在这个环节的活动中所表现出来的书写不规范,错误的地方,提醒学生注意。环节三:情境引入内容:与学生共同分析完成课本呈现的三个情境:(1)如果设小红的年龄为x岁,那么“乘2再减5”就是2x-5,所以得到方程:2x-5=21组织活动:四人小组做猜年龄的游戏,每个小组会有几个不同的等式.如:我的年龄乘2减5等于91,你知道老师多大了吗?学生算出老师48岁了(2)小丽种了一株树苗,开始时树苗高为40cm,栽种后每周树苗长高约5cm,大约几周后树苗长高到1m?如果设x周后树苗长高到1m,那么可以得到方程:40+5x=100(3)甲、乙两地相距22km,张叔叔从甲地出发到乙地,每时比原计
17、划多行走1km,因此提前12min到达乙地,张叔叔原计划每时行走多少千米?设张叔叔原计划每时行走xkm,可以得到方程:目的:通过准确列三个方程,感受:1、列方程解应用题的关键是:寻找等量关系;2、三个方程可分为三种类型:一元一次方程,分式方程,一元二次方程。注意事项:学生在列方程时要注意以下问题:1、让学生读题、审题,锻炼学生的审题能力;2、(2)中单位换算:1米=100厘米。等量关系为:最后树高=初始树高+每周生长高度;3、(3)中单位换算:12分=小时。等量关系为:原计划所用时间-现在所用时间=提前时间;环节四:归纳一元一次方程的定义,了解一元一次方程的解的含义内容:议一议(1)由上面的问
18、题你得到了哪些方程?其中哪些是你熟悉的方程?与同伴进行交流.共得到三个方程。其中(1)、(2)都只有一个未知数,在小学学习时常见。(2)方程2x-5=21,40+5x=100,(1+147.30%)x=8930有什么共同点?它们都只含有一个未知数,且未知数的指数都是1.目的:由(1)引导学生逐步深入地思考所列的五个方程的特点:未知数的次数、位置不同;由(2)得出一元一次方程的定义:在一个方程中,只含有一个未知数,且未知数的指数都是1,这样的方程叫做一元一次方程。实际效果:逐步引发学生对方程特点的研究,由此让学生自己说出一元一次方程的定义,并判断上述五个方程只有三个一元一次方程。结论的得出源于学
19、生在实际问题中分析,并不断地综合总结,体现了学生思维的主动性.内容2:方程的解得含义:使方程左、右两边的值相等的未知数的值,叫做方程的解。x=2是下列方程的解吗?完成(1)3x+(10-x)=20;(2)2+6=7x目的:了解方程的解的含义;判断是否为方程的解的方法:将解带入原方程,分别计算左和右,看是否相等。相等则为原方程的解。实际效果:1、学生有小学的基础,能理解方程的解的含义;2、学生熟练将方程的解带入方程进行验证,得出结论。环节五:达标检测内容1:完成教材上的随堂练习1、根据题意,列出方程:(1)在一卷公元前1600年左右遗留下来的古埃及纸草书中,记载着一些数学问题其中一个问题翻译过来
20、是:“啊哈,它的全部,它的,其和等于19”你能求出问题中的“它”吗?解:设“它”为x,则:(2)甲、乙两队开展足球对抗赛,规定每队胜一场得3分,平一场得1分,负一场得0分甲队与乙队一共比赛了10场,甲队保持了不败记录,一共得了22分甲队胜了多少场?平了多少场?解:设甲队赢了x场,则乙队赢了(10-x)场。则:2、达标练习:下列各式中,是方程的是(只填序号)2x=15-4=17m-n+13(x+y)=4下列各式中,是一元一次方程的是(只填序号)x-3y=1x2+2x+3=0x=7x2-y=0a的20加上100等于x.则可列出方程:.某数的一半减去该数的等于6,若设此数为x,则可列出方程一桶油连桶
21、的重量为8千克,油用去一半后,连桶重量为4.5千克,桶内有油多少千克?设桶内原有油x千克,则可列出方程_小颖的爸爸今年44岁,是小颖年龄的3倍还大2岁,设小明今年x岁,则可列出方程:_3年前,父亲的年龄是儿子年龄的4倍,3年后父亲的年龄是儿子年龄的3倍,求父子今年各是多少岁?设3年前儿子年龄为x岁,则可列出方程:_目的:对本节知识进行巩固练习实际效果:1、学生基本能很好地对随堂练习的问题给出准确的解答。2、由同学选自己组的代表发言,对P133随堂练习1中的各个量及所表示的意义进行说明,加深对背景下的数学模型的理解。3、达标练习中的题可以有选择的做。环节六:课堂小结内容:师生互动,梳理本节内容。
22、(本节课你的收获,你的疑惑)目的:鼓励学生结合学习本节课本内容及课前的预习,谈谈自己的收获与感想,包括如何调整自己的读书方法.实际效果:学生一方面总结出了:本节给出了四个知识点:等式(回顾巩固),方程(给出描述性定义),一元一次方程及一元一次的解(根).感觉在解决实际问题时,列方程相比小学算术法,给出的思维方式与途径更具普遍性.列方程的核心:实际问题“数学化”,关键是找到等量关系。另一方面:每位同学都在现有程度上,适当调整自己的读书预习方式及自己独立思考问题的途径.环节七:布置作业1、习题5.12、思考:如何得到所列三个一元一次方程的解?五、教学反思:此阶段的学生有比较强烈的自我发展意识,对与
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 认识 一元一次方程 教学 设计

限制150内