乘法公式(完全平方公式2).docx
《乘法公式(完全平方公式2).docx》由会员分享,可在线阅读,更多相关《乘法公式(完全平方公式2).docx(27页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、乘法公式(完全平方公式2) 第一篇:乘法公式(完全平方公式2) 课题:乘法公式完全平方公式2 一测验讲解 利用乘法公式计算: 1.99 2.(-2x+5)2-(2x+1)(1-2x) 二教学目标: 1. 驾驭完全平方公式的推广,学会利用换元思想进行转化; 2. 驾驭添括号和去括号的法则,并会灵敏运用; 3. 能根据题目特点选择适当的公式进行计算。 三指导自学: 问题1:计算(a+b+c)2; 问题2:将(a+b+c)2中的a+b看作一个整体,你会计算吗?结果有规律吗? 问题3:你能利用前面所学的学问灵敏计算(x+2y-3)(x-2y+3)吗? 四老师讲解: 归纳公式:(a+b+c)2等于每一项
2、的平方和加上每两项乘积的2倍。 例1.(x-2y-z) 2.(x-y+1)(x+y+1) 3.(3m-n-p)(3m+n+p) 五当堂训练: 1.(3x-5y+1)-(x+2y)(x-2y) 2.(x-2y+3z)(x+2y-3z) 六落实检测: 计算:(a+2b+3)(a-2b-3)+(2a-b-1) 小结:1.娴熟驾驭乘法公式及其推广; 2.留意运算中的符号问题。 布置作业 2222 其次篇:完全平方公式 完全平方公式说课稿 一、教材内容的分析 解决问题是数学课程的灵魂,其特点在于技巧性和程式化。假如说语文教学面对人生的问题,需要用情感陶冶去解决,那么数学教学面临的数量转变课题,必需用敏捷
3、的思维和繁复的计算程序去解决。一方面是灵敏机动的创建性思维,一方面是固定的公式计算,两者缺一不行. 一教材的地位和作用 完全平方公式是初中代数的一个重要组成部分,是学生在已经驾驭单项式乘法、多项式乘法及平方差公式基础上的拓展,对以后学习因式分解、解一元二次方程、配方法、勾股定理及图形面积计算都有举足轻重的作用。本节内容共支配两个课时,这次说课是其中第一个课时。 二教学目标确实定 1、知道完全平方公式与多项式乘法的关系,理解完全平方公式的意义。 2、阅历完全平方公式的探求过程,熟识完全平方公式的特征,会运用完全平方公式解决一些简洁问题。 3、使学生体会数、形结合的优势,进一步进展符号感和推理实力
4、,培育学生数学建模的思想。激励学生自己探究算法的多样化,有意识地培育学生的创新实力。 三 教学重难点 重点:体会完全平方公式的觉察和推导过程,理解公式的本质,并会运用公式进行简洁的计算。 难点:判别要计算的代数式是哪两个数的和(或差)的平方。 四 教学具准备:多媒体课件。 二、学生学情的分析 初一学生的抽象思维实力、规律思维实力、数学化实力有限,理解完全平方公式的几何说明、推导过程、结构特点有确定困难。所以教学中应尽可能多地让学生动手操作,突出完全平方公式的探究过程,自主探究出完全平方公式的基本形式,并用语言表述其结构特征,进一步进展学生的合情推理实力、合作沟通实力和数学化实力。 三、教法学法
5、的选择 一说教法:由本节课实际,我接受自主探究,启发引导,合作沟通绽开教学,引导学生主动地进行视察、揣测、验证和沟通。考虑到学生的认知方式、思维水平和学习实力的差异进行分层次教学,让不同层次的学生都能主动参与并都能得到充分的进展。边启发,边探究,边归纳,突出以学生为主体的探究性学习活动,遵循学问产生过程,从特殊一般特殊,将所学的学问用于实践中。接受小组探讨,大组竞赛等多种形式激发学习爱好。 二说学法:引导学生主动思维,激励学生进行合作学习,让每个学生都动口、动手、动脑,自己归纳出运算法则,培育学生学习的主动性和主动性。 四、教材处理 根据本节内容特点,本着按部就班的原则,我将以“扩建后的正方形
6、广场面积是多少?这个实际问题引入新课,关于两数和的平方公式通过实例、推导、验证几个步骤完成。关于两数差的平方公式,将为学生供应三种不同的思路,由学生自己选择学习、理解,然后再归纳方法,再通过分层次练习,加以稳固。 五、教学设计 1、创设情景,导入新知 在复习整式乘法的基础上,创设情境:有一个边长为a米的正方形广场,现要扩建该广场,要求将其边长增加b米,试问这个正方形广场的面积有多大? 设计意图:从现实生活中的数学情景动身,培育学生对数学的酷爱和运用数学的实力。 要求:1分别写出每一块的面积;2用不同的形式表示广场的总面积,并进行比较。 可用填空形式引导: 四块面积分别为:_、_、_、_; 两种
7、形式表示广场的总面积: 整体看:边长为_的大正方形,S=_; 部分看:四块面积的和,S=_。 在学生探究出(a+b)2=a2+2ab+b2的基础上,提问:你能用多项式乘法法则说明理由吗? 设计意图:学生运用多项式乘法法则推导出 并说出每一步运算的道理。学生在直观相识的基础上,从代数角度推导公式,可以培育学生的规律推理实力。两种思路:利用图形方法、利用多项式乘法 2、引导操作,探究新知 提问:假如将该正方形广场的边长缩减b米,则其边长又为多少?面积呢? 要求:让学生分组动手拼图:用手头的彩色纸,在原有的正方形广场上,拼出如今的广场,探究其面积的不同表示方法及其内在联系,体会完全平方公式的几何背景
8、。小组成员之间要互相合作、互相沟通 在学生探究出 的基础上,提问:你能用多项式乘法法则说明理由吗? 设计意图:通过实际操作,激励学生阅历视察、操作、沟通等过程,培育学生的自主探究的学习习惯。激励学生自己探究,激励算法多样化,尤其是对 这种用已获得的学问来解决问题的方法,渗透了转化的数学思想,应赐予确定。三种思路:利用图形方法、利用多项式乘法、利用换元思想 3、视察特征、建立模型 在学生自主探究出 和 这两个公式,并明白其几何说明后,激励学生自主探究这两个公式的结构特征。 问题: 这两个公式有何相同点与不同点? 你能用自己的语言表达这两个公式吗? 顺口溜强化记忆:首平方,尾平方,首尾两倍中间放,
9、中间符号看首尾。 设计意图: 教材对这两个公式的语言表达比较抽象,理解有确定难度,为此结合两个公式的特征,可用顺口溜强化记忆。 4、范例解析,深化新知 、探求规律,留意双基 练习一:给出一组简洁的习题,比照公式,仿照练习。口答 (1)(a+5)2 (2)(y-7)2 (3)(3+x)2 (4)(2-y)2 (5)(x+2y)2 (6)(10a-b)2 运用完全平方公式计算,一般步骤: 1 确定首尾,分别平方; 2 确定中间系数与符号,得到结论。 练习二:进一步强化学生对法则的理解,遵循由浅入深,按部就班的原则,设计以下练习: (- (2x-3y)2 (-2x+3y)2 (3-)2 t3x+3y
10、)2 (1-3x)(3x-1) 2六个小组选代表回答下列问题。 、运用法则,解决问题 练习一:以下计算是否正确?如何改正? (a+b)2=a2+b2 (a-b)=a-b (a+2b)=a+2ab+2b 设计意图:对学生可能会出现的错误作刚好的预防。 练习二:回到导入情景,要求学生求出扩建后的正方形广场的面积比原广场的面积增加了多少平方米? 设计意图:让学生构建完全平方模型解决实际问题,体会数学的建模思想。 、发散练习,勇于创新 用完全平方公式计算: 2222221(1) 99 (2) 100.1 (3) 10 2222学生驾驭了这种方法后,可让同桌互相出题,比一比,再次体会公式的妙用,实现了对
11、完全平方公式的理性相识。 设计意图:基本的数学运算是数学学问最干脆的应用,也是学生体会公式“优势的最正确实例。上题能开阔学生的思维,学生对公式的理解也获得了升华。 4、归纳总结,反思新知 本节课我们又学习了乘法的两个公式: 我们在运用公式时,要留意以下几点: 公式中的字母a、b可以是随便代数式; 公式的结果有三项,不要漏项和写错符号 5、分层作业,延长新知 接受必做题和选做题,分层要求。必做题是基础训练题,全体同学必需完成;选做题是提高训练题,可根据自己的实力,选择完成。 设计意图:作业布置做到既面对全体学生,又给基础较好的学生充分的进展空间,满意不同学生的不同需求。 第三篇:完全平方公式教案
12、2 完全平方公式教案2 更多精品源自 3 e d u 课件 教学过程 .提出问题,创设情境 请同学们完成以下运算并回忆去括号法则. (1)4+(5+2) (2)4-(5+2) (3)a+(b+c) (4)a-(b-c) 解:(1)4+(5+2)=4+5+2=11 (2)4-(5+2)=4-5-2=-3 或:4-(5+2)=4-7=-3 (3)a+(b+c)=a+b+c (4)a-(b-c)=a-b+c 去括号法则: 去括号时,假如括号前是正号,去掉括号后,括号里的每一项都不变更符合;假如括号前是负号,去掉括号后,括号里的各项都变更符合. 也就是说,遇加不变,遇减都变. 4+5+2与4+(5+2
13、)的值相等;4-5-2与4-(5+2)的值相等.所以可以写出以下两个等式: (1)4+5+2=4+(5+2) (2)4-5-2=4-(5+2) 左边没括号,右边有括号,也就是添了括号,同学们可不行以总结出添括号法则来呢? (学生分组探讨,最终总结) 添括号其实就是把去括号反过来,所以添括号法则是: 添括号时,假如括号前面是正号,括到括号里的各项都不变符号;假如括号前面是负号,括到括号里的各项都变更符号. 也是:遇加不变,遇减都变. 能举例说明吗? 例如a+b-c,要对+b-c项添括号,可以让a先休息,括号前添加号,括号里的每项都不变更符号,也就是+(+b-c),括号里的第一项若系数为正数可省略
14、正号即+(b-c),于是得:a+b-c=a+(b-c);若括号前添减号,括号里的每一项都变更符号,+b改为-b,-c改为+c.也就是-(-b+c),于是得a+b-c=a-(-b+c).添加括号后,无论括号前是正还是负,都不变更代数式的值. 你说得很有条理,也很精确. 请同学们利用添括号法则完成以下练习: (出示投影片) 1.在等号右边的括号内填上适当的项: (1)a+b-c=a+( ) (2)a-b+c=a-( ) (3)a-b-c=a-( ) (4)a+b+c=a-( ) 2.推断以下运算是否正确. (1)2a-b- =2a-(b- ) (2)m-3n+2a-b=m+(3n+2a-b) (3
15、)2x-3y+2=-(2x+3y-2) (4)a-2b-4c+5=(a-2b)-(4c+5) (学生尝试或独立完成,然后与同伴沟通解题心得.老师遁视学生完成状况,刚好觉察问题,并关心个别有困难的同学) 总结:添括号法则是去括号法则反过来得到的,无论是添括号,还是去括号,运算前后代数式的值都保持不变,所以我们可以用去括号法则验证所添括号后的代数式是否正确. .导入新课 有些整式相乘需要先作适当的变形,然后再用公式,这就需要同学们理解乘法公式的结构特征和真正内涵.请同学们分组探讨,完成以下计算. (出示投影片) 例:运用乘法公式计算 (1)(x+2y-3)(x-2y+3) (2)(a+b+c)2
16、(3)(x+3)2-x2 (4)(x+5)2-(x-2)(x-3) (让学生充分探讨,激励学生用多种方法运算,从而到达灵敏应用公式的目的) 分析:(1)是每个因式都是三项和的整式乘法,我们可以用添括号法则将每个因式变为两项的和,再视察到2y-3与-2y+3是相反数,所以应在2y-3和-2y+3项添括号,以便利用乘法公式,到达简化运算的目的. (2)是一个完全平方的形式,只须将a+b+c中随便两项结合添加括号变为两项和,便可应用完全平方公式进行运算. (3)是完全平方公式计算,也可以逆用平方差公式计算. (4)完全平方公式计算与多项式乘法计算,但要留意运算依次,减号后面的积算出来确定先放在括号里
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 乘法 公式 完全 平方
限制150内