湖南省永州市新田县第一中学高中数学 28 复数的运算课件 理 新人教A版选修2-2.ppt
《湖南省永州市新田县第一中学高中数学 28 复数的运算课件 理 新人教A版选修2-2.ppt》由会员分享,可在线阅读,更多相关《湖南省永州市新田县第一中学高中数学 28 复数的运算课件 理 新人教A版选修2-2.ppt(18页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、3.2 复数代数形式的加、减运算复数代数形式的加、减运算及其几何意义及其几何意义知识回顾知识回顾1、复数的代数形式、复数的代数形式 _ Z=a+bi (a,bR)2.复数的几何意义是什么?复数的几何意义是什么?Z=a+bi(a.bR)复平面上的点复平面上的点Z(a,b)向量向量OZ类比实数的运算法则能否得到复数的运算法则?类比实数的运算法则能否得到复数的运算法则?设设Z1=a+bi,Z2=c+di(a、b、c、dR)是任意两是任意两个复数,那么它们的和个复数,那么它们的和:(a+bi)+(c+di)=(1)复数的加法运算法则是一种规定。)复数的加法运算法则是一种规定。当当b=0b=0,d=0d
2、=0时时与实数加法法则保持一致与实数加法法则保持一致(2 2)很明显,两个复数的和仍然是一个)很明显,两个复数的和仍然是一个 。对于复数的加法可以推广到多个复数相加的情形。对于复数的加法可以推广到多个复数相加的情形。1、复数的加法法则:、复数的加法法则:(a+c)+(b+d)i复数复数即实部与实部即实部与实部 虚部与虚部分别相加虚部与虚部分别相加证:证:设设Z1=a1+b1i,Z2=a2+b2i,Z3=a3+b3i(a1,a2,a3,b1,b2,b3R)则则Z1+Z2=(a1+a2)+(b1+b2)i,Z2+Z1=(a2+a1)+(b2+b1)i显然显然 Z1+Z2=Z2+Z1同理可得同理可得
3、 (Z1+Z2)+Z3=Z1+(Z2+Z3)点评:实数加法运算的交换律、结合律在复数集点评:实数加法运算的交换律、结合律在复数集C中中依然成立。依然成立。运算律运算律探究探究?复数的加法满足交换律,结合律吗?复数的加法满足交换律,结合律吗?Z1+Z2=Z2+Z1(Z1+Z2)+Z3=Z1+(Z2+Z3)复数的加法满足交换律、结合律,即对任复数的加法满足交换律、结合律,即对任意意Z1C,Z2C,Z3C课堂练习课堂练习:1、计算、计算(1)(+4i)+(3-4i)=(2)(-3-4i)+(2+i)+(1-5i)=(3)已知已知Z1=a+bi,Z2=c+di,若,若Z1+Z2是纯虚数,是纯虚数,则有
4、(则有()A.a-c=0且且b-d0 B.a-c=0且且b+d0 C.a+c=0且且b-d0 D.a+c=0且且b+d0 5-8iDyxO 设设 及及 分别与复数分别与复数 及复数及复数 对应,则对应,则 ,向量向量 就是与复数就是与复数 对应的向量对应的向量.探究?探究?复数与复平面内的向量有一一的对应关系。我们讨论过复数与复平面内的向量有一一的对应关系。我们讨论过向量加法的几何意义,你能由此出发讨论复数加法的几何意义吗?向量加法的几何意义,你能由此出发讨论复数加法的几何意义吗?复数的加法可按照向量的加法来进行,这就复数的加法可按照向量的加法来进行,这就是复数加法的几何意义是复数加法的几何意
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 湖南省永州市新田县第一中学高中数学 28 复数的运算课件 新人教A版选修2-2 湖南省 永州市 新田县 第一 中学 高中数学 复数 运算 课件 新人 选修
限制150内