医学专题—耳鸣与乙状窦憩室..7882.ppt
《医学专题—耳鸣与乙状窦憩室..7882.ppt》由会员分享,可在线阅读,更多相关《医学专题—耳鸣与乙状窦憩室..7882.ppt(47页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、耳鸣(r mng)与乙状窦憩室第一页,共四十七页。【病历(bngl)简介】患者女,41岁,2011年4月10日以右侧波动性耳鸣3年为主诉求治。据述,右侧耳鸣症状以颈部扭动时加重,不伴听力减退与眩晕。双侧鼓膜完整,标志清,活动良好。纯音听力计、声阻抗与耳声发射均无异常。先后接受颞骨CT扫描,结果如下(右侧颞骨轴位CT扫描):第二页,共四十七页。第三页,共四十七页。第四页,共四十七页。第五页,共四十七页。第六页,共四十七页。颞骨(nig)冠状位CT扫描第七页,共四十七页。第八页,共四十七页。第九页,共四十七页。颞骨(nig)增强CT扫描第十页,共四十七页。第十一页,共四十七页。第十二页,共四十七页
2、。第十三页,共四十七页。第十四页,共四十七页。第十五页,共四十七页。第十六页,共四十七页。第十七页,共四十七页。【影像(yn xin)解读】从该患者CT扫描图像可见,右侧乙状窦沟朝外侧的颞骨(nig)鳞部呈局限性膨隆,致使该部分形成憩室。不仅存在着颞骨(nig)鳞部的骨皮质变薄,而且,乙状窦与乳突气房之间的骨壁缺损。通过增强CT扫描,我们可以发现乙状窦与这个骨部膨隆的关系,即乙状窦的憩室样改变,符合乙状窦憩室的临床诊断。第十八页,共四十七页。【乙状窦的解剖】乙状窦,属于颅内的静脉窦之一,系硬脑膜折叠形成的结构,具有颅内静脉窦的功能,即将脑脊液转化成静脉血回流到颈内静脉的作用。乙状窦的上端与横窦
3、相连接,下方延续为颈内静脉,其间接受岩上窦和岩下窦的静脉回流,成为中、后颅窝以及部分前颅窝脑结构的重要引流径路。就耳科而言,这个静脉窦位于颞骨乳突后缘与枕骨(zhng)结合形成的乙状窦沟内,构成乳突的后界,也参与颞骨结构的构成。第十九页,共四十七页。乙状窦构成(guchng)的字形 Sigmoid Sinus,乙状窦的英文词汇,其中 Sigmoid 的词汇意思为“S”形,以形容乙状窦与横窦和颈内静脉球形成的弯曲构型。其实,这种汉文(hn wn)的翻译并不十分准确。从结构上看,乙状窦与上端的横窦共同形成汉语中的”乙“字形,而不是自身独自构成这个乙字形的静脉窦。确切地说,乙状窦应该是指横窦与乙状窦
4、共同构成的乙字形静脉窦,而非仅仅是如今我们所讲的乙状窦。其次,英文中的 Sigmoid 一词意为 S 形,而乙状窦的解剖构型充其量也就是乙字形状。显然,乙状窦的汉语翻译并非十分完美,更多的是源于起初的传统称谓。第二十页,共四十七页。乙状窦与周围结构(jigu)的解剖关系(示意图)第二十一页,共四十七页。第二十二页,共四十七页。第二十三页,共四十七页。第二十四页,共四十七页。第二十五页,共四十七页。乙状窦沟的位置(wi zhi)(干性颅骨标本)颞骨的岩部呈锥形,尖端朝向颅中窝的内侧,岩上和岩下窦分别沿其上缘和下缘朝内汇集,最后与前颅底的海绵窦相沟通。这两个(lin)静脉窦的外端则与乙状窦的上下起
5、始部连接,这就使得该静脉窦参与前颅底静脉回流过程。与此可见,乙状窦不仅是颞骨内结构的主要静脉回流途径,也是前颅底静脉系统的部分。尽管乙状窦与颈内静脉内流动的是静脉血液,同样是颅内静脉回流的组成部分,但两者之间存在着解剖结构与功能方面的明显不同。结构上,乙状窦壁主要是硬脑膜折叠构成,其内层是固有脑膜,外侧属于颅骨的骨膜部分,内衬血管上皮构成;相形之下,颈内静脉主要的构成是血管壁的固有纤维层,因而远不如乙状窦的管壁厚实。第二十六页,共四十七页。乙状窦的功能(gngnng)模式 功能上看,乙状窦的颅内面正对着蛛网膜下腔,后者中间流动着脑脊液,而窦壁存在的蛛网膜颗粒则将无色透明(tumng)的脑脊液转
6、变成为静脉血液进入窦内,起着将脑脊液与脑组织内的代谢产物携带进入窦内,然后再以静脉回流的形式返回肺循环的功用。从这个意义上讲,乙状窦的静脉回流障碍必将影响到大脑的血液循环,进而形成回流区域的静脉回流不畅,其结果是脑脊液不能够回流造成颅内压力的升高;其次,也导致大脑的代谢产物不能够排泄,遂形成脑组织的缺氧状态。临床上,乙状窦血栓性静脉炎便是最为典型的事例之一。第二十七页,共四十七页。乙状窦与颅内静脉(jngmi)窦的沟通途径 综上所述,乙状窦参与颅内的血液循环(xnhun),司理着颅中后窝和部分颅前窝的静脉回流,因为构成颞骨乳突的后界而称为耳科关注的部分。作为一个颅内静脉窦,通过拥有的蛛网膜颗粒
7、吸收脑脊液,担负着维持脑脊液的循环(xnhun)功能,对于正常颅内压的维持具有重要的临床意义;同时,随着静脉的回流,它也将脑组织的代谢产物带回肺循环(xnhun),这对于大脑的有氧代谢不可或缺。特别需要指出的是乙状窦处于乳突与枕骨结合的乙状窦沟内,使得耳外科医生认识该静脉窦的解剖变异成为手术安全的基本保证。当然,就血管性耳鸣而言,不外乎涉及到耳周的血管结构,其中主要包括颈内动脉与颈外静脉系统,而后者的主要代表便是乙状窦。有鉴于此,乙状窦的解剖变异就成了静脉性波动性耳鸣的常见原因之一。第二十八页,共四十七页。耳与颈内动静脉的解剖(jipu)关系 仅就血管性耳鸣而论,颞骨内的主要血管主要是颈内动脉
8、与静脉系统,前者系颞骨内段,后者则为乙状窦与颈静脉球两个部分。其中,颈静脉球占据着鼓室腔的下方,乙状窦则构成乳突气房的后界,与中耳腔之间均有致密的骨壁,形成了声学的阻尼(zn)性隔离,确保了这些血管的波动不被中耳传到与察觉。当然,与动脉相比较,乙状窦的静脉特点所形成的波动很小,因而导致的静脉性波动性耳鸣不如动脉性耳鸣的临床症状严重。无论静脉还是动脉与中耳的含气空腔(诸如鼓室与气房)之间的骨壁缺损,都有可能造成血管本身波动的声音直接进入中耳腔,产生内源性听觉感受,也就是我们通常称为的耳鸣。第二十九页,共四十七页。乙状窦与中耳腔之间的声学隔离(示意图)临床上,乙状窦骨壁的完整性遭到破坏,常常造成该
9、静脉窦一定程度的裸露,使其直接与乳突气房群相沟通,而后者又与中耳腔存在着互通,这就使得乙状窦内流动血液的波动声直接传达到鼓室腔,形成内源性的空气传导(chundo)机制。当然,多数情况下,这种直接的乙状窦暴露并不引发耳鸣的临床症状。仅有在窦内静脉存在波动性的充盈情况下,才可能造成明显的听觉现象。其中,乙状窦内腔的形状改变诸如膨大或憩室时,窦内的血液形成局部的涡流,改变了血流对于管壁的压力关系,才可能导致血管波动的幅度增大,其强度超过听觉阈值,方可形成听觉的传导(chundo)与感受。第三十页,共四十七页。乳突(r t)切开与轮廓化后的乙状窦(示意图)第三十一页,共四十七页。颞骨的乳突后缘与枕骨
10、的交界形成枕乳缝,对应的颅内面构成容纳乙状窦外半部分的骨槽,即乙状窦沟。通常,在鼓室腔与乙状窦沟之间存在着乳突气房结构,而且,乙状窦沟的表面均为致密的骨皮质,也使得乙状窦的静脉波动声得以充分的阻碍,不能够被中耳所传导形成内源性听觉。其次,乳突气房群含有空气,也能够有效地吸收乙状窦内血液流动形成的振动。因此,正常情况下乙状窦的波动很小,加上乳突的骨性阻碍与气房系统的吸收,确保了这种血管波动对中耳不形成额外的听觉刺激。临床上,当乙状窦发生下列解剖变异时,就很容易改变这种声学隔离的功能关系,形成额外的内源性听觉感受,即所谓的耳鸣。1、乙状窦位置的改变 通常,乙状窦的前界与外耳道后壁之间的距离 为 2
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 医学 专题 耳鸣 乙状窦憩室 7882
限制150内