221用样本频率分布估计总体分布tef.pptx
《221用样本频率分布估计总体分布tef.pptx》由会员分享,可在线阅读,更多相关《221用样本频率分布估计总体分布tef.pptx(37页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、2.2.1 用样本的频率分布估计总体分布1.用样本去估计总体,是研究统计问题的一个基本思想。2.前面我们学过的抽样方法有:简单随机抽样、系统抽样、分层抽样。要注意这几种抽样方法的联系与区别。3.初中时我们学习过样本的频率分布,包括频数、频率的概念,频数分布表和频数分布直方图的制作。学习目标 1.了解频率分布和频率分布直方图的意义。2.掌握频率分布表和频率分布直方图的画法。3.了解折线图和密度曲线的意义。频率分布 样本中所有数据(或数据组)的频数和与样本容量的比,叫做该数据的频率。频率分布的表示形式有:样本频率分布表样本频率分布图 样本频率分布条形图 样本频率分布直方图样本频率分布折线图 所有数
2、据(或数据组)的频数的分布变化规律叫做样本的频率分布。知识探究(一):频率分布表【问题】我国是世界上严重缺水的国家之一,城市缺水问题较为突出,某市政府为了节约生活用水,计划在本市试行居民生活用水定额管理,即确定一个居民月用水量标准a,用水量不超过a的部分按平价收费,超出a的部分按议价收费.通过抽样调查,获得100位居民2007年的月均用水量如下表(单位:t):3.1 2.5 2.0 2.0 1.5 1.0 1.6 1.8 1.9 1.63.4 2.6 2.2 2.2 1.5 1.2 0.2 0.4 0.3 0.43.2 2.7 2.3 2.1 1.6 1.2 3.7 1.5 0.5 3.83.
3、3 2.8 2.3 2.2 1.7 1.3 3.6 1.7 0.6 4.13.2 2.9 2.4 2.3 1.8 1.4 3.5 1.9 0.8 4.33.0 2.9 2.4 2.4 1.9 1.3 1.4 1.8 0.7 2.02.5 2.8 2.3 2.3 1.8 1.3 1.3 1.6 0.9 2.32.6 2.7 2.4 2.1 1.7 1.4 1.2 1.5 0.5 2.42.5 2.6 2.3 2.1 1.6 1.0 1.0 1.7 0.8 2.42.8 2.5 2.2 2.0 1.5 1.0 1.2 1.8 0.6 2.21.极差:样本数据中的最大值和最小值的差称为极差2.确定组
4、距,组数:.如果将上述100个数据按组距为0.5进行分组,那么这些数据共分为多少组?4.3-0.2=4.1(4.3-0.2)0.5=8.2 3 将数据分组,决定分点:以组距为0.5进行分组,上述100个数据共分为9组,各组数据的取值范围可以如何设定?4 画频率分布表:如何统计上述100个数据在各组中的频数?如何计算样本数据在各组中的频率?你能将这些数据用表格反映出来吗?0,0.5),0.5,1),1,1.5),4,4.5.分 组 频数累计 频数 频率 0,0.5)4 0.04 0.5,1)正 8 0.08 1,1.5)正 正 正 15 0.15 1.5,2)正 正 正 正 22 0.22 2,
5、2.5)正 正 正 正 正 25 0.25 2.5,3)正 正 14 0.14 3,3.5)正 一 6 0.06 3.5,4)4 0.04 4,4.5 2 0.02 合计 100 1.00知识探究(二):频率分布直方图 5 画频率分布直方图 为了直观反映样本数据在各组中的分布情况,我们将上述频率分布表中的有关信息用下面的图形表示:月均用水量/t频率组距0.50.40.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O上图称为频率分布直方图,其中横轴表示月均用水量,纵轴表示频率/组距.频率分布直方图中各小长方形的宽度和高度在数量上有何特点?月均用水量/t频率组距0.50.4
6、0.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O宽度:组距高度:频率组距2 图形的意义 图形的意义:频率分布直方图中各小长方形的面积表示什么?各小长方形的面积之和为多少?各小长方形的面积=频率各小长方形的面积之和=1月均用水量/t频率组距0.50.40.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O宽度:组距高度:频率组距 频率分布直方图的纵轴(长方形的高)表示频率与组距的比值,其相应组距上的频率等于该组距上长方形的面积。注意:3 分析例题:频率分布直方图非常直观地表明了样本数据的分布情况,使我们能够看到频率分布表中看不太清楚的数据模式,但
7、原始数据不能在图中表示出来.你能根据上述频率分布直方图指出居民月均用水量的一些数据特点吗?月均用水量/t频率组距0.50.40.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O(1)居民月均用水量的分布是“山峰”状的,而且是“单峰”的;(2)大部分居民的月均用水量集中在一个中间值附近,只有少数居民的月均用水量很多或很少;(3)居民月均用水量的分布有一定的对称性等.月均用水量/t频率组距0.50.40.30.20.10.5 1 1.5 2 2.5 3 3.5 4 4.5 O思考:对一组给定的样本数据,频率分布直方图的外观形状与哪些因素有关?在居民月均用水量样本中,你能以1
8、为组距画频率分布直方图吗?与分组数(或组距)及坐标系的单位长度有关.月均用水量/t频率组距0.40.30.20.11 2 3 4 5 O1、求极差(即一组数据中最大值与最小值的差)知道这组数据的变动范围4.3-0.2=4.12、决定组距与组数(将数据分组)3、将数据分组(8.2取整,分为9组)画频率分布直方图的步骤4、列出频率分布表.(填写频率/组距一栏)5、画出频率分布直方图。组距:指每个小组的两个端点的距离,组距组数:将数据分组,当数据在100个以内时,按数据多少常分5-12组。小结 思考:如果当地政府希望使百分之八十五以上的居民每月的用水量不超出标准,根据频率分布表和频率分布直方图,你能
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 221 样本 频率 分布 估计 总体 tef
限制150内