《中考数学二次函数复习题附答案(共16页).docx》由会员分享,可在线阅读,更多相关《中考数学二次函数复习题附答案(共16页).docx(20页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上初中数学二次函数组卷一选择题(共10小题)1(2015成都校级模拟)函数y=ax2+c和y=(a0,c0)在同一坐标系里的图象大致是()ABCD2(2015裕华区模拟)已知函数y=,则下列函数图象正确的是()ABCD3(2015杭州模拟)如图图形中,阴影部分面积相等的是()A甲乙B甲丙C乙丙D丙丁4(2015市北区一模)在同一直角坐标系中,函数y=kx2k和y=kx+k(k0)的图象大致是()ABCD5(2015苏州一模)二次函数y=(x2)2+1的图象的顶点坐标是()A(2,1)B(2,1)C(2,1)D(2,1)6(2015黄陂区校级模拟)二次函数y=x2的图象的
2、开口方向是()A向上B向下C向左D向右7(2015山西模拟)抛物线y=x2不具有的性质是()A开口向上B对称轴是y轴C在对称轴的左侧,y随x的增大而增大D最高点是原点8(2015徐汇区一模)已知二次函数y=ax22x+2(a0),那么它的图象一定不经过()A第一象限B第二象限C第三象限D第四象限9(2015莒县一模)如图,是二次函数y=ax2+bx+c(a0)的图象的一部分,给出下列命题:abc0;ax2+bx+c=0的两根分别为3和1;b2a;2b+c0;其中正确的命题是()ABCD10(2015崇明县一模)如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断中,不正确的是()Aa0
3、Bb0Cc0Db24ac0二填空题(共15小题)11(2015青浦区一模)如果抛物线y=(a+3)x25不经过第一象限,那么a的取值范围是12(2015盐城校级模拟)若抛物线y=x2kx+k1的顶点在x轴上,则k=13(2015徐汇区一模)二次函数y=x24x5的图象的对称轴是直线14(2015温州模拟)已知二次函数,若y随x的增大而减小,则x的取值范围是15(2015河西区一模)抛物线y=2x2+x4的对称轴为16(2015高新区一模)函数y=(x+1)2+5的最大值为17(2015大庆校级模拟)用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式18(2015春张掖校级月
4、考)二次函数y=3(x1)2+2图象的顶点坐标为19(2014路桥区模拟)如图,如果反比例函数的图象经过抛物线y=x22x的顶点,那么这个反比例函数的解析式为20(2014杨浦区一模)函数y=(x+5)(2x)图象的开口方向是21(2015春锦州校级月考)二次函数y=x26x+3k的图象与x轴有两个交点,则k的取值范围是22(2013本溪)在平面直角坐标系中,把抛物线y=x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是23(2012上海)将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是24(2011黑龙江)抛物线y=(x+1)21的顶点坐标为25(2010黔东南州
5、)二次函数y=(x+1)21,当1y2时,x的取值范围是三解答题(共5小题)26(2015福建模拟)求二次函数y=2(x3)25的顶点坐标27(2015齐齐哈尔模拟)如图,二次函数y=x2+bx+c的图象经过坐标原点,且与x轴交于A(2,0)(1)求此二次函数解析式及顶点B的坐标;(2)在抛物线上有一点P,满足SAOP=3,直接写出点P的坐标28(2015嘉定区一模)已知二次函数y=mx22x+n(m0)的图象经过点(2,1)和(1,2),求这个二次函数的解析式,并求出它的图象的顶点坐标和对称轴29(2015宝山区一模)已知一个二次函数的图象经过点A(1,0)和点B(0,6),C(4,6),求
6、这个抛物线的表达式以及该抛物线的顶点坐标30(2015岳池县模拟)已知抛物线的顶点坐标是(8,9),且过点(0,1),求该抛物线的解析式初中数学二次函数组卷参考答案与试题解析一选择题(共10小题)1(2015成都校级模拟)函数y=ax2+c和y=(a0,c0)在同一坐标系里的图象大致是()ABCD考点:二次函数的图象;反比例函数的图象菁优网版权所有分析:本题可先由二次函数图象得到字母系数的正负,再与反比例函数的图象相比较看是否一致逐一排除解答:解:由A,D中的二次函数图象可得a0,c=0,因为y=(a0,c0),故A,D错误;由B,C中的二次函数图象可得a0,c0,所以y=(a0,c0)的图象
7、在二,四象限内,故C错误,B正确故选:B点评:此题主要考查了反比例函数图象与二次函数图象,应该识记反比例函数在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴等2(2015裕华区模拟)已知函数y=,则下列函数图象正确的是()ABCD考点:二次函数的图象;反比例函数的图象菁优网版权所有分析:分析y=x2+1在x1时的性质和y=在x1时的性质,选出正确选项即可解答:解:y=x2+1,开口向上,对称轴是y轴,顶点坐标是(0,1),当x1时,B、C、D正确;y=,图象在第一、三象限,当x1时,C正确故选:C点评:本题考查的是二次函数图象和反比例函数图象,正确理解图象与系数之间的关
8、系是解题的关键3(2015杭州模拟)如图图形中,阴影部分面积相等的是()A甲乙B甲丙C乙丙D丙丁考点:二次函数的图象;一次函数的图象;反比例函数的图象菁优网版权所有专题:数形结合分析:甲、丙:根据函数解析式求出图象与x轴,y轴的交点坐标,再计算阴影部分的面积;乙:可判断出阴影部分为斜边为4的等腰直角三角形,据此计算阴影部分的面积;丁:利用反比例函数系数k的几何意义求出阴影部分的面积解答:解:甲:直线y=x+4与x轴交点为(3,0),与y轴的交点为(0,4),则阴影部分的面积为34=6;乙:阴影部分为斜边为4的等腰直角三角形,其面积为42=4;丙:抛物线y=2与x轴的两个交点为(3,0)与(3,
9、0),顶点坐标为(0,2),则阴影部分的面积为62=6;丁:此函数是反比例函数,那么阴影部分的面积为6=3;因此甲、丙的面积相等,故选B点评:此题主要考查了函数图象与坐标轴交点坐标的求法以及图形面积的求法,是基础题,熟练掌握各类函数的图象特点是解决问题的关键4(2015市北区一模)在同一直角坐标系中,函数y=kx2k和y=kx+k(k0)的图象大致是()ABCD考点:二次函数的图象;一次函数的图象菁优网版权所有分析:可先根据一次函数的图象判断k的符号,再判断二次函数图象与实际是否相符,判断正误解答:解:A、由一次函数y=kx+k的图象可得:k0,此时二次函数y=kx2kx的图象应该开口向上,错
10、误;B、由一次函数y=kx+k图象可知,k0,此时二次函数y=kx2kx的图象顶点应在y轴的负半轴,错误;C、由一次函数y=kx+k可知,y随x增大而减小时,直线与y轴交于负半轴,错误;D、正确故选:D点评:本题考查的是一次函数和二次函数的图象,应该熟记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标5(2015苏州一模)二次函数y=(x2)2+1的图象的顶点坐标是()A(2,1)B(2,1)C(2,1)D(2,1)考点:二次函数的性质菁优网版权所有分析:根据顶点式的意义直接解答即可解答:解:二次函数y=(x2)2+1的图象的顶点坐标是(2
11、,1)故选A点评:本题考查了二次函数的性质,要熟悉顶点式的意义,并明确:y=a(xh)2+k(a0)的顶点坐标为(h,k)6(2015黄陂区校级模拟)二次函数y=x2的图象的开口方向是()A向上B向下C向左D向右考点:二次函数的性质菁优网版权所有分析:由抛物线解析式可知,二次项系数a=10,可知抛物线开口向上解答:解:二次函数y=x2的二次项系数a=10,抛物线开口向上故选A点评:本题考查了抛物线的开口方向与二次项系数符号的关系当a0时,抛物线开口向上,当a0时,抛物线开口向下7(2015山西模拟)抛物线y=x2不具有的性质是()A开口向上B对称轴是y轴C在对称轴的左侧,y随x的增大而增大D最
12、高点是原点考点:二次函数的性质菁优网版权所有分析:此题应从二次函数的基本形式入手,它符合y=ax2的基本形式,根据它的性质,进行解答解答:解:因为a0,所以开口向下,顶点坐标(0,0),对称轴是y轴,有最高点是原点故选:A点评:此题主要考查y=ax2形式二次函数的基本性质,比较基础,但也是中考中热点问题8(2015徐汇区一模)已知二次函数y=ax22x+2(a0),那么它的图象一定不经过()A第一象限B第二象限C第三象限D第四象限考点:二次函数的性质菁优网版权所有分析:先根据题意判断出二次函数的对称轴方程,再令x=0求出y的值,进而可得出结论解答:解:二次函数y=ax22x+2(a0)的对称轴
13、为直线x=0,其顶点坐标在第一或四象限,当x=0时,y=2,抛物线一定经过第二象限,此函数的图象一定不经过第三象限故选C点评:本题考查的是二次函数的性质,熟知二次函数的对称轴方程是解答此题的关键9(2015莒县一模)如图,是二次函数y=ax2+bx+c(a0)的图象的一部分,给出下列命题:abc0;ax2+bx+c=0的两根分别为3和1;b2a;2b+c0;其中正确的命题是()ABCD考点:二次函数图象与系数的关系菁优网版权所有分析:由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断解答:解:抛物线开口
14、向上,a0,抛物线与y轴交于负半轴,c0,对称轴在y轴的左侧,b0,abc0,错误;由抛物线的对称性可知,ax2+bx+c=0的两根分别为3和1,正确;对称轴=1,b=2a,错误;x=2时,y0,4a2b+c0,2b+c4a,4a0,2b+c0,正确,故选:B点评:本题考查的是二次函数图象与系数的关系,二次函数y=ax2+bx+c系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点抛物线与x轴交点的个数确定,二次函数y=ax2+bx+c与x轴交点的横坐标即为方程ax2+bx+c=0的两个根10(2015崇明县一模)如果二次函数y=ax2+bx+c的图象如图所示,那么下列判断中,不正确的是()A
15、a0Bb0Cc0Db24ac0考点:二次函数图象与系数的关系菁优网版权所有分析:首先根据开口方向确定a的符号,再依据对称轴的正负和a的符号即可判断b的符号,然后根据与y轴的交点的纵坐标即可判断c的正负,由二次函数y=ax2+bx+c的图象与x轴有两个交点,可得b24ac0解答:解:由图象的开口向上可得a开口向上,由x=0,可得b0,由二次函数y=ax2+bx+c的图象交y轴于负半轴可得c0,由二次函数y=ax2+bx+c的图象与x轴有两个交点,可得b24ac0,所以B不正确故选:B点评:本题主要考查二次函数的图象与系数的关系,能根据图象正确确定各个系数的符号是解决此题的关键,此题运用了数形结合
16、思想二填空题(共15小题)11(2015青浦区一模)如果抛物线y=(a+3)x25不经过第一象限,那么a的取值范围是a3考点:二次函数的性质菁优网版权所有分析:根据抛物线y=(a+3)x25不经过第一象限可以确定不等式的开口方向,从而确定a的取值范围解答:解:抛物线y=(a+3)x25不经过第一象限,a+30,解得:a3,故答案为:a3点评:考查了二次函数的性质,根据抛物线的开口方向,与y轴的交点,对称轴判断抛物线经过的象限12(2015盐城校级模拟)若抛物线y=x2kx+k1的顶点在x轴上,则k=2考点:二次函数的性质菁优网版权所有分析:顶点在x轴上,所以顶点的纵坐标是0解答:解:根据题意得
17、=0,解得k=2故答案为:2点评:本题考查求抛物线顶点纵坐标的公式,比较简单,牢记公式是解题的关键13(2015徐汇区一模)二次函数y=x24x5的图象的对称轴是直线x=2考点:二次函数的性质菁优网版权所有分析:根据二次函数的对称轴公式列式计算即可得解解答:解:对称轴为直线x=2,即直线x=2故答案为:x=2点评:本题考查了二次函数的性质,主要利用了对称轴公式,需熟记14(2015温州模拟)已知二次函数,若y随x的增大而减小,则x的取值范围是x1考点:二次函数的性质菁优网版权所有分析:根据二次函数的解析式的二次项系数判定该函数图象的开口方向、根据顶点式方程确定其图象的顶点坐标,从而知该二次函数
18、的单调区间解答:解:二次函数的解析式的二次项系数是,该二次函数的开口方向是向上;又该二次函数的图象的顶点坐标是(1,4),该二次函数图象在1m上是减函数,即y随x的增大而减小;即:当x1时,y随x的增大而减小,故答案为:x1点评:本题考查了二次函数图象的性质解答该题时,须熟知二次函数的系数与图象的关系、二次函数的顶点式方程y=(kh)x2b中的h,b的意义15(2015河西区一模)抛物线y=2x2+x4的对称轴为考点:二次函数的性质菁优网版权所有分析:根据抛物线y=ax2+bx+c的对称轴公式为X=,此题中的a=4,b=3,将它们代入其中即可解答:解:x=故答案为点评:本题考查二次函数对称轴公
19、式的应用,熟练掌握对称轴公式是解题的关键16(2015高新区一模)函数y=(x+1)2+5的最大值为5考点:二次函数的最值菁优网版权所有分析:根据二次函数的性质a=10,函数有最大值5解答:解:10,函数y=(x+1)2+5的最大值为5故答案为:5点评:本题考查的是二次函数的性质,二次函数y=a(xh)2+k,当a0时,函数有最小值k,当a0时,函数有最大值k17(2015大庆校级模拟)用配方法把二次函数y=2x2+3x+1写成y=a(x+m)2+k的形式y=2(x+)2考点:二次函数的三种形式菁优网版权所有分析:把二次函数y=2x2+3x+1用配方法化为顶点式即可解答:解:y=2x2+3x+
20、1=2(x+)2故答案为:y=2(x+)2点评:本题考查的是用配方法把一般式化为顶点式,掌握配方法是解题的关键,y=ax2+bx+c=a(x+)2+18(2015春张掖校级月考)二次函数y=3(x1)2+2图象的顶点坐标为(1,2)考点:二次函数的性质;二次函数的三种形式菁优网版权所有专题:函数思想分析:二次函数y=a(xh)2+k(a0)的顶点坐标是(h,k)解答:解:根据二次函数的顶点式方程y=3(x1)2+2知,该函数的顶点坐标是:(1,2)故答案是:(1,2)点评:本题考查了二次函数的性质和二次函数的三种形式解答该题时,需熟悉二次函数的顶点式方程y=a(xh)2+k中的h、k所表示的意
21、义19(2014路桥区模拟)如图,如果反比例函数的图象经过抛物线y=x22x的顶点,那么这个反比例函数的解析式为y=考点:二次函数的性质;待定系数法求反比例函数解析式菁优网版权所有分析:利用二次函数的性质求出抛物线的顶点坐标,代入反比例函数的解析式为y=求解即可解答:解:抛物线y=x22x=(x+1)2+1,抛物线的顶点为(1,1),设反比例函数的解析式为y=,把(1,1),代入得k=1,反比例函数的解析式为y=故答案为:y=点评:本题主要考查了二次函数的性质及待定系数法求反比例函数解析式,解题的关键是求出抛物线的顶点坐标20(2014杨浦区一模)函数y=(x+5)(2x)图象的开口方向是向下
22、考点:二次函数的性质菁优网版权所有分析:首先将二次函数化为一般形式,然后根据二次项系数的符号确定开口方向解答:解:y=(x+5)(2x)=x2+3x+10,a=10,开口向下,故答案为:向下点评:本题考查了二次函数的性质,解题的关键是正确的化为一般形式21(2015春锦州校级月考)二次函数y=x26x+3k的图象与x轴有两个交点,则k的取值范围是k3考点:抛物线与x轴的交点菁优网版权所有分析:根据判别式b24ac与零的关系即可判断出二次函数y=x26x+3k的图象与x轴交点的个数解答:解:根据题意,得=b24ac0,即(6)2413k0,解得:k3点评:本题考查了二次函数y=ax2+bx+c的
23、图象与x轴交点的个数的判断,理解=b24ac0时,二次函数的图象与x轴有两个交点是解题关键22(2013本溪)在平面直角坐标系中,把抛物线y=x2+1向上平移3个单位,再向左平移1个单位,则所得抛物线的解析式是y=(x+1)2+4考点:二次函数图象与几何变换菁优网版权所有分析:先求出原抛物线的顶点坐标,再根据向左平移横坐标减,向上平移纵坐标加求出平移后的抛物线的顶点坐标,然后写出抛物线解析式即可解答:解:抛物线y=x2+1的顶点坐标为(0,1),向上平移3个单位,再向左平移1个单位后的抛物线的顶点坐标为(1,4),所得抛物线的解析式为y=(x+1)2+4故答案为y=(x+1)2+4点评:本题主
24、要考查的了二次函数图象与几何变换,利用顶点坐标的平移确定函数图象的平移可以使求解更简便,平移规律“左加右减,上加下减”23(2012上海)将抛物线y=x2+x向下平移2个单位,所得抛物线的表达式是y=x2+x2考点:二次函数图象与几何变换菁优网版权所有分析:根据向下平移,纵坐标要减去2,即可得到答案解答:解:抛物线y=x2+x向下平移2个单位,抛物线的解析式为y=x2+x2,故答案为y=x2+x2点评:本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|24(2011黑龙江)抛物线y=(x+1)21的顶点坐标为(1,1)考点:二次函数的性质菁优网版权所有分析:根据二次函
25、数顶点形式,直接可以得出二次函数的顶点坐标解答:解:抛物线y=(x+1)21,抛物线y=(x+1)21的顶点坐标为:(1,1)故答案为:(1,1)点评:此题主要考查了二次函数的性质,同学们应根据题意熟练地应用二次函数性质,这是中考中考查重点知识25(2010黔东南州)二次函数y=(x+1)21,当1y2时,x的取值范围是1x1或1+x1+考点:二次函数的性质菁优网版权所有专题:计算题分析:把y=1和y=2分别代入二次函数解析式,求x的值,已知对称轴为x=1,根据对称性求x的取值范围解答:解:当y=1时,(x+1)21=1,解得x=1+或x=1,当y=2时,(x+1)21=2,解得x=1+或x=
26、1,又抛物线对称轴为x=1,1x1,或1+x1+故答案为:1x1或1+x1+点评:本题考查了二次函数的增减性,对称性关键是求出函数值y=1或2时,对应的x的值,再结合图象确定x的取值范围三解答题(共5小题)26(2015福建模拟)求二次函数y=2(x3)25的顶点坐标考点:二次函数的性质菁优网版权所有分析:利用顶点式表达式的特点求解即可解答:解:二次函数y=2(x3)25,二次函数的顶点坐标为(3,5)点评:本题主要考查了二次函数的性质,解题的关键是熟记顶点式表达式的特点27(2015齐齐哈尔模拟)如图,二次函数y=x2+bx+c的图象经过坐标原点,且与x轴交于A(2,0)(1)求此二次函数解
27、析式及顶点B的坐标;(2)在抛物线上有一点P,满足SAOP=3,直接写出点P的坐标考点:待定系数法求二次函数解析式;二次函数图象上点的坐标特征菁优网版权所有分析:(1)把A(2,0)、O(0,0)代入解析式y=x2+bx+c,可得出二次函数解析式,即可得出B的坐标;(2)利用三角形的面积可得出P点的纵坐标,可求出点P的横坐标,即可得出点P的坐标解答:解:(1)将A(2,0)、O(0,0)代入解析式y=x2+bx+c,得c=0,42b+c=0,解得c=0,b=2,所以二次函数解析式:y=x22x,顶点B坐标 (1,1);(2)AO=2,SAOP=3,P点的纵坐标为32=3,x22x=3,解得x1
28、=1,x2=3,P1 (3,3)P2(1,3)点评:本题主要考查了待定系数法求二次函数解析式与图象上点的坐标特征,解题的关键是正确求出二次函数的表达式28(2015嘉定区一模)已知二次函数y=mx22x+n(m0)的图象经过点(2,1)和(1,2),求这个二次函数的解析式,并求出它的图象的顶点坐标和对称轴考点:待定系数法求二次函数解析式菁优网版权所有分析:把点(2,1)和(1,2)代入y=mx22x+n(m0)求出m,n的值,即可求出二次函数的解析式及它的图象的顶点坐标和对称轴解答:解:由题意得,解得,所以这个二次函数的解析式为y=x22x1,顶点坐标为(1,2)对称轴是直线x=1点评:本题主
29、要考查了待定系数法求二次函数解析式,解题的关键是利用待定系数法求二次函数解析式29(2015宝山区一模)已知一个二次函数的图象经过点A(1,0)和点B(0,6),C(4,6),求这个抛物线的表达式以及该抛物线的顶点坐标考点:待定系数法求二次函数解析式菁优网版权所有分析:把点A(1,0)和点B(0,6),C(4,6)代入y=ax2+bx+c,即可求出二次函数的解析式及它的图象的顶点坐标解答:解:设抛物线的表达式为y=ax2+bx+c,把点A(1,0)和点B(0,6),C(4,6)代入得,解得,所以抛物线的表达式为y=2x28x+6=2(x2)22,所以顶点的坐标为(2,2)点评:本题主要考查了待定系数法求二次函数解析式,解题的关键是利用待定系数法求二次函数解析式30(2015岳池县模拟)已知抛物线的顶点坐标是(8,9),且过点(0,1),求该抛物线的解析式考点:待定系数法求二次函数解析式菁优网版权所有分析:根据抛物线的顶点坐标设出抛物线的解析式,再把(0,1),代入求解即可解答:解:抛物线的顶点坐标是(8,9),设抛物线的解析式为y=a(x8)2+9,把(0,1),代入得1=64a+9,解得a=,抛物线的解析式为y=(x8)2+9点评:本题主要考查了用待定系数法求二次函数的解析式,解题的关键是正确的设出抛物线的解析式专心-专注-专业
限制150内