专题函数常见题型归纳(教师版)(共9页).doc
《专题函数常见题型归纳(教师版)(共9页).doc》由会员分享,可在线阅读,更多相关《专题函数常见题型归纳(教师版)(共9页).doc(9页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、精选优质文档-倾情为你奉上专题函数常见题型归纳本专题热点考点可总结为六类:一是分段函数的求值问题,二是函数的性质及其应用,三是基本函数的图像和性质,四是函数图像的应用,五是方程根的问题,六是函数的零点问题。考点一 分段函数求值问题【例1】 已知函数f(x) 若f(a)f(1)0,则实数a的值等于()【解析】 由已知,得f(1)2;又当x0时,f(x)2x1,而f(a)f(1)0,f(a)2,且a0,a12,解得a3【例2】设f(x)则f(f(2)_.【解析】 f(x) 20,f(102)lg1022.【解题技巧点睛】求f(g(x)类型的函数值时,应遵循先内后外的原则,而对于分段函数的求值问题,
2、必须依据条件准确地找出利用哪一段求解,特别地对具有周期性的函数求值要用好其周期性.考点二 函数性质的基本应用【例3】下列函数中,既是偶函又在(0,)单调递增的函数是()Ayx3 By|x|1 Cyx21 Dy2|x|【答案】B【解析】 A选项中,函数yx3是奇函数;B选项中,y1是偶函数,且在上是增函;C选项中,yx21是偶函数,但在上是减函数;D选项中,y2|x|x|是偶函数,但在上是减函故选B.【例4】若函数f(x)为奇函数,则a()【解析】 法一:由已知得f(x)定义域关于原点对称,由于该函定义域为,知a,故选A.法二:f(x)是奇函数,f(x)f(x),又f(x),则,因函数的定义域内
3、恒成立,可得a.【例5】函数的图像与函数()的图像所有交点的横坐标之和等于( )A2 B4 C6 D8【解题技巧点睛】在解决与函数性质有关的问题中,如果结合函数的性质画出函数的简图,根据简图进一步研究函数的性质,就可以把抽象问题变得直观形象、复杂问题变得简单明了,对问题的解决有很大的帮助. (1)一般的解题步骤:利用函数的周期性把大数变小或小数变大,然后利用函数的奇偶性调整正负号,最后利用函数的单调性判断大小; (2)画函数草图的步骤:由已知条件确定特殊点的位置,然后利用单调性确定一段区间的图象,再利用奇偶性确定对称区间的图象,最后利用周期性确定整个定义域内的图象.考点三 基本函数的性质与图像
4、 【例6】已知则( ) A B C D 【答案】C【解析】根据对数函数的运算性质可知:再由指数函数为单调递增函数,因为,且,所以【例7】 对实数a和b,定义运算“”:ab设函f(x)(x22)(xx2),xR,若函数yf(x)c的图象与x轴恰有两个公共点,则实数c的取值范围是()【解析】本题考查二次函数的性质和图像。 f(x) 则f的图象如图:yf(x)c的图象与x轴恰有两个公共点,yf(x)与yc的图象恰有两个公共点,由图象知c2,或1c.考点四 函数图像的应用【例8】 设函f(x)(xR)满足f(x)f(x),f(x2)f(x),则yf(x)的图像可能是()【答案】B【解析】 由f(x)f
5、(x)可知函数为偶函数,其图像关于y轴对称,可以结合选项排除A、C,再利用f(x2)f(x),可知函为周期函数,且T2,必满足f(4)f(2),排除D,故只能选B.【例9】 已知函数yf(x)的周期为2,当x1,1时f(x)x2,那么函数yf(x)的图像与函数y|lgx|的图像的交点共有()【解析】考查数形结合思想,在同一直角坐标系中作出两个函数的图像,故下图容易判断出两函数图像的交点个数为10个【解题技巧点睛】函数图象分析类试题,主要就是推证函数的性质,然后根据函数的性质、特殊点的函数值以及图象的实际作出判断,这类试题在考查函数图象的同时重点是考查探究函数性质、用函数性质分析问题和解决问题的
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 专题 函数 常见 题型 归纳 教师版
限制150内