初中数学知识点总结及解法方法.pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《初中数学知识点总结及解法方法.pdf》由会员分享,可在线阅读,更多相关《初中数学知识点总结及解法方法.pdf(7页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、Word 文档初中数学知识点总结及解法方法初中数学知识点总结及解法方法数学是我们学习的主要科目之一,学习数学要把握方法,不能单靠死记硬背,理解很重要。平常要多思索,多练习,多做题。学会对学问重点进行分析,相同因数 A 的积的运算叫做乘方,乘方的结果叫幂,A 叫底数,N 叫次数。混合顺序:先算乘法,再算乘除,最终算加减,有括号要先算括号里的。2、实数总结,归纳,以形成学问体系,完善认知结构。以下是我为大家整理的有关初中数学学问点总结及解法方法,希望对您有所关怀。欢迎大家阅读参考学习!数与代数 A、数与式1、有理数有理数:整数正整数/0/负整数分数正分数/负分数数轴:画一条水平直线,在直线上取一点
2、表示 0(原点),选取某一长度作为单位长度,规定直线上向右的方向为正方向,就得到数轴。任何一个有理数都可以用数轴上的一个点来表示。假如两个数只有符号不同,那么我们称其中一个数为另外一个数的相反数,也称这两个数互为相反数。在数轴上,表示互为相反数的两个点,位于原点的两侧,并且与原点距离相等。数轴上两个点表示的数,右边的总比左边的大。正数大于 0,负数小于 0,正数大于负数。确定值:在数轴上,一个数所对应的点与原点的距离叫做该数的确定值。正数的确定值是他的本身、负数的确定值是他的相反数、0 的确定值是 0。两个负数比较大小,确定值大的反而小。有理数的运算:加法:同号相加,取相同的符号,把确定值相加
3、。异号相加,确定值相等时和为 0;确定值不等时,取确定值较大的数的符号,并用较大的确定值减去较小的确定值。一个数与 0 相加不变。减法:减去一个数,等于加上这个数的相反数。乘法:两数相乘,同号得正,异号得负,确定值相乘。任何数与 0 相乘得 0。乘积为 1 的两个有理数互为倒数。除法:除以一个数等于乘以一个数的倒数。0 不能作除数。乘方:求 N 个无理数:无限不循环小数叫无理数平方根:假如一个正数X的平方等于A,那么这个正数 X 就叫做 A 的算术平方根。假如一个数 X 的平方等于 A,那么这个数 X 就叫做 A 的平方根。一个正数有 2 个平方根/0 的平方根为 0/负数没有平方根。求一个数
4、 A 的平方根运算,叫做开平方,其中 A 叫做被开方数。立方根:假如一个数 X 的立方等于 A,那么这个数 X 就叫做 A 的立方根。正数的立方根是正数、0 的立方根是 0、负数的立方根是负数。求一个数 A 的立方根的运算叫开立方,其中 A 叫做被开方数。实数:实数分有理数和无理数。在实数范围内,相反数,倒数,确定值的意义和有理数范围内的相反数,倒数,确定值的意义完全一样。每一个实数都可以在数轴上的一个点来表示。3、代数式代数式:单独一个数或者一个字母也是代数式。合并同类项:所含字母相同,并且相同字母的指数也相同的项,叫做同类项。把同类项合并成一项就叫做合并同类项。在合并同类项时,我们把同类项
5、的系数相加,字母和字母的指数不变。4、整式与分式整式:数与字母的乘积的代数式叫单项式,几个单项式的和叫多项式,单项式和多项式统称整式。一个单项式中,全部字母的指数和叫做这个单项式的次数。一个多项式中,次数最高的项的次数叫做这个多项式的次数。整式运算:加减运算时,假如遇到括号先去括号,再合并同类项。1 1/7 7Word 文档幂的运算:AM+AN=A(M+N)(AM)N=AMN(A/B)N=AN/BN 除法一样。整式的乘法:单项式与单项式相乘,把他们的系数,相同字母的幂分别相乘,其余字母连同他的指数不变,作为积的因式。单项式与多项式相乘,就是根据支配律用单项式去乘多项式的每一项,再把所得的积相加
6、。多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得一元一次方程:在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。等式两边同时加上或减去或乘以或除以(不为 0)一个代数式,所得结果仍是等式。解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为 1。的积相加。公式两条:平方差公式/完全平方公式整式的除法:单项式相除,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式。多项式除以单项式,先把这个多项式的每一项分别除以单项式,再把所得的商相加。分解因式:把一个多项式化成几个整式的
7、积的形式,这种转变叫做把这个多项式分解因式。方法:提公因式法、运用公式法、分组分解法、十字相乘法。分式:整式 A 除以整式 B,假如除式 B 中含有分母,那么这个就是分式,对于任何一个分式,分母不为 0。分式的分子与分母同乘以或除以同一个不等于 0 的整式,分式的值不变。分式的运算:乘法:把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。除法:除以一个分式等于乘以这个分式的倒数。加减法:同分母分式相加减,分母不变,把分子相加减。异分母的分式先通分,化为同分母的分式,再加减。分式方程:分母中含有未知数的方程叫分式方程。使方程的分母为 0的解称为原方程的增根。方程与不等式一、方程与方程组二元
8、一次方程:含有两个未知数,并且所含未知数的项的次数都是1 的方程叫做二元一次方程。二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。解二元一次方程组的方法:代入消元法/加减消元法。一元二次方程:只有一个未知数,并且未知数的项的最高系数为2 的方程。1 一元二次方程的二次函数的关系大家已经学过二次函数(即抛物线)了,对他也有很深的了解,好像解法,在图象中表示等等,其实一元二次方程也可以用二次函数来表示,其实一元二次方程也是二次函数的一个特殊状况,就是当Y的
9、 0的时候就构成了一元二次方程了。那假如在平面直角坐标系中表示出来,一元二次方程就是二次函数中,图象与X轴的交点。也就是该方程的解了。2 一元二次方程的解法大家知道,二次函数有顶点式(-b/2a,4ac-b2/4a),这大家要记住,很重要,因为在上面已经说过了,一元二次方程也是二次函数的一部分,所以他也有自己的一个解法,利用他可以求出全部的一元一次方程的解。(1)配方法利用配方,使方程变为完全平方公式,在用直接开平方法去求出解。(2)分解2 2/7 7Word 文档因式法提取公因式,套用公式法,和十字相乘法。在解一元二次方程的时候也一样,利用这点,把方程化为几个乘积的形式去解。(3)公式法这方
10、法也可以是在解一元二次方程的万能方法了,方程的根 X1=-b+b2-4ac)/2a,X2=-b-b2-4ac)/2a。3 解一元二次方程的步骤:(1)配方法的步骤:先把常数项移到方程的右边,再把二次项的系数化为 1,一个整式,不等号的方向不变。不等式的两边都乘以或者除以一个正数,不等号方向不变。不等式的两边都乘以或除以同一个负数,不等号方向相反。不等式的解集:能使不等式成立的未知数的值,叫做不等式的解。一个含有未知数的不等式的全部解,组成这个不等式的解集。求不等式解集的过程叫做解不等再同时加上 1 次项的系数的一半的平方,最终配成完全平方公式。(2)分解因式法的步骤:把方程右边化为0,然后看看
11、是否能用提取公因式,公式法(这里指的是分解因式中的公式法)或十字相乘,假如可以,就可以化为乘积的形式。(3)公式法就把一元二次方程的各系数分别代入,这里二次项的系数为a,一次项的系数为 b,常数项的系数为 c。4 韦达定理利用韦达定理去了解,韦达定理就是在一元二次方程中,二根之和=-b/a,二根之积=c/a,也可以表示为 x1+x2=-b/a,x1x2=c/a。利用韦达定理,可以求出一元二次方程中的各系数,在题目中很常用。5 一元一次方程根的状况利用根的判别式去了解,根的判别式可在书面上可以写为“”,读作“diao ta”,而=b2-4ac,这里可以分为 3 种状况:I 当0 时,一元二次方程
12、有 2 个不相等的实数根;II 当=0 时,一元二次方程有 2 个相同的实数根;III 当0 时,一元二次方程没有实数根(在这里,学到高中就会知道,这里有 2 个虚数根)。二、不等式与不等式组不等式:用符号,=,号连接的式子叫不等式。不等式的两边都加上或减去同式。一元一次不等式:左右两边都是整式,只含有一个未知数,且未知数的最高次数是 1 的不等式叫一元一次不等式。一元一次不等式组:关于同一个未知数的几个一元一次不等式合在一起,就组成了一元一次不等式组。一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。求不等式组解集的过程,叫做解不等式组。一元一次不等式的符号方向:
13、在一元一次不等式中,不像等式那样,等号是不变的,他是随着你加或乘的运算转变。在不等式中,假如加上同一个数(或加上一个正数),不等式符号不改向;例如:AB,A+CB+C;在不等式中,假如减去同一个数(或加上一个负数),不等式符号不改向;例如:AB,A-CB-C;在不等式中,假如乘以同一个正数,不等号不改向;例如:AB,A_CB_C(C0);在不等式中,假如乘以同一个负数,不等号改向;例如:AB,A_C。假如不等式乘以 0,那么不等号改为等号,所以在题目中,要求出乘以的数,那么就要看看题中是否出现一元一次不等式,假如出现了,那么不等式乘以的数就不等为 0,否则不等式不成立。三、函数变量:3 3/7
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初中 数学 知识点 总结 解法 方法
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内