全国高考数学(理科)试卷(全国卷Ⅰ)(解析版).pdf
《全国高考数学(理科)试卷(全国卷Ⅰ)(解析版).pdf》由会员分享,可在线阅读,更多相关《全国高考数学(理科)试卷(全国卷Ⅰ)(解析版).pdf(24页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、高考真题20072007 年全国统一高考数学试卷(理科)年全国统一高考数学试卷(理科)(全国卷(全国卷)一、选择题(共一、选择题(共 1212 小题,每小题小题,每小题 4 4 分,满分分,满分 4848 分)分)1(4 分)是第四象限角,ABCD,则 sin=()2(4 分)设 a 是实数,且AB1CD2,是实数,则 a=()3(4 分)已知向量A垂直B不垂直也不平行,则 与()C平行且同向 D平行且反向4(4 分)已知双曲线的离心率为2,焦点是(4,0),(4,0),则双曲线方程为()ABCD5(4 分)设 a,bR,集合1,a+b,a=0,b,则 ba=()A1B1 C2D2,且位于6(
2、4分)下面给出的四个点中,到直线xy+1=0的距离为表示的平面区域内的点是()A(1,1)B(1,1)C(1,1)D(1,1)7(4 分)如图,正棱柱 ABCDA1B1C1D1中,AA1=2AB,则异面直线 A1B 与 AD1所成角的余弦值为()ABCD高考真题1高考真题8(4 分)设 a1,函数 f(x)=logax 在区间a,2a上的最大值与最小值之差为,则 a=()AB2CD49(4 分)f(x),g(x)是定义在 R 上的函数,h(x)=f(x)+g(x),则“f(x),g(x)均为偶函数”是“h(x)为偶函数”的()A充要条件B充分而不必要的条件D既不充分也不必要的条件C必要而不充分
3、的条件10(4 分)A3B4C5的展开式中,常数项为 15,则 n=()D6的直线与抛11(4 分)抛物线 y2=4x 的焦点为 F,准线为 l,经过 F 且斜率为物线在 x 轴上方的部分相交于点 A,AKl,垂足为 K,则AKF 的面积是()A4BCD812(4 分)函数 f(x)=cos2x2cos2的一个单调增区间是()A二、填空题(共二、填空题(共 4 4 小题,每小题小题,每小题 5 5 分,满分分,满分 2020 分)分)13(5 分)从班委会 5 名成员中选出 3 名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有种(用数字作答)14(
4、5 分)函数 y=f(x)的图象与函数 y=log3x(x0)的图象关于直线 y=x 对称,则 f(x)=15(5 分)等比数列an的前 n 项和为 Sn,已知 S1,2S2,3S3成等差数列,则an的公比为16(5 分)一个等腰直角三角形的三个顶点分别在正三棱柱的三条侧棱上,已知正三棱柱的底面边长为 2,则该三角形的斜边长为高考真题2BCD高考真题三、解答题(共三、解答题(共 6 6 小题,满分小题,满分 8282 分)分)17(12 分)设锐角三角形 ABC 的内角 A,B,C 的对边分别为 a,b,c,a=2bsinA()求 B 的大小;()求 cosA+sinC 的取值范围18(12
5、分)某商场经销某商品,根据以往资料统计,顾客采用的付款期数 的分布列为P10.420.230.240.150.1商场经销一件该商品,采用1 期付款,其利润为200 元;分2 期或 3 期付款,其利润为 250 元;分4 期或 5 期付款,其利润为300 元,表示经销一件该商品的利润()求事件 A:“购买该商品的 3 位顾客中,至少有 1 位采用 1 期付款”的概率P(A);()求 的分布列及期望 E高考真题3高考真题19(14 分)四棱锥 SABCD 中,底面 ABCD 为平行四边形,侧面 SBC底面 ABCD,已知ABC=45,AB=2,BC=2,SA=SB=()证明:SABC;()求直线
6、SD 与平面 SBC 所成角的大小20(14 分)设函数 f(x)=exex()证明:f(x)的导数 f(x)2;()若对所有 x0 都有 f(x)ax,求 a 的取值范围高考真题4高考真题21(14 分)已知椭圆的左右焦点分别为 F1、F2,过 F1的直线交椭圆于 B、D 两点,过 F2的直线交椭圆于 A、C 两点,且 ACBD,垂足为 P()设 P 点的坐标为(x0,y0),证明:()求四边形 ABCD 的面积的最小值;22(16 分)已知数列an中,a1=2,()求an的通项公式;()若数列bn中,b1=2,n=1,2,3,n=1,2,3,证明:,n=1,2,3,高考真题5高考真题200
7、72007 年全国统一高考数学试卷(理科)年全国统一高考数学试卷(理科)(全国卷(全国卷)参考答案与试题解析参考答案与试题解析一、选择题(共一、选择题(共 1212 小题,每小题小题,每小题 4 4 分,满分分,满分 4848 分)分)1(4 分)(2007全国卷)是第四象限角,ABCD,则 sin=()【分析】根据 tan=,sin2+cos2=1,即可得答案=,sin2+cos2=1,【解答】解:是第四象限角,sin=故选 D2(4 分)(2007全国卷)设 a 是实数,且AB1CD2是实数,则 a=()【分析】复数分母实数化,化简为 a+bi(a、bR)的形式,虚部等于 0,可求得结果【
8、解答】解设 a 是实数,则 a=1,故选 B3(4 分)(2007全国卷)已知向量A垂直B不垂直也不平行,则 与()=是实数,C平行且同向 D平行且反向【分析】根据向量平行垂直坐标公式运算即得【解答】解:向量 ,高考真题6,得,高考真题故选 A4(4 分)(2007全国卷)已知双曲线的离心率为 2,焦点是(4,0),(4,0),则双曲线方程为()ABCD【分析】根据焦点坐标求得 c,再根据离心率求得 a,最后根据 b=b,双曲线方程可得【解答】解已知双曲线的离心率为 2,焦点是(4,0),(4,0),则 c=4,a=2,b2=12,双曲线方程为故选 A,求得5(4 分)(2007全国卷)设 a
9、,bR,集合1,a+b,a=0,b,则 ba=()A1B1 C2D2,注意到后面集合中有元素 0,【分析】根据题意,集合由集合相等的意义,结合集合中元素的特征,可得 a+b=0,进而分析可得 a、b的值,计算可得答案【解答】解:根据题意,集合又a0,a+b=0,即 a=b,b=1;故 a=1,b=1,则 ba=2,故选 C高考真题7,高考真题6(4 分)(2007全国卷)下面给出的四个点中,到直线 xy+1=0 的距离为且位于表示的平面区域内的点是()D(1,1),且位于表示的平面区,A(1,1)B(1,1)C(1,1)【分析】要找出到直线 xy+1=0 的距离为域内的点,我们可以将答案中的四
10、个点逐一代入验证,不难得到结论【解答】解给出的四个点中,(1,1),(1,1),(1,1)三点到直线 xy+1=0 的距离都为但,仅有(1,1)点位于故选 C表示的平面区域内7(4 分)(2007全国卷)如图,正棱柱 ABCDA1B1C1D1中,AA1=2AB,则异面直线 A1B 与 AD1所成角的余弦值为()ABCD【分析】先通过平移将两条异面直线平移到同一个起点 B,得到的锐角A1BC1就是异面直线所成的角,在三角形中 A1BC1用余弦定理求解即可【解答】解如图,连接 BC1,A1C1,A1BC1是异面直线 A1B 与 AD1所成的角,设 AB=a,AA1=2a,A1B=C1B=a,A1C
11、1=a,高考真题8高考真题A1BC1的余弦值为,故选 D8(4 分)(2007全国卷)设 a1,函数 f(x)=logax 在区间a,2a上的最大值与最小值之差为,则 a=()AB2CD4【分析】因为 a1,函数f(x)=logax 是单调递增函数,最大值与最小值之分别为 loga2a、logaa=1,所以 loga2alogaa=,即可得答案【解答】解a1,函数 f(x)=logax 在区间a,2a上的最大值与最小值之分别为 loga2a,logaa,loga2alogaa=,故选 D9(4 分)(2008上海)f(x),g(x)是定义在 R 上的函数,h(x)=f(x)+g(x),则“f(
12、x),g(x)均为偶函数”是“h(x)为偶函数”的()A充要条件B充分而不必要的条件D既不充分也不必要的条件,a=4,C必要而不充分的条件【分析】本题主要是抽象函数奇偶性的判断,只能根据定义,而要否定奇偶性,一般用特值【解答】解若“f(x),g(x)均为偶函数”,则有 f(x)=f(x),g(x)=g(x),h(x)=f(x)+g(x)=f(x)+g(x)=h(x),“h(x)为偶函数”,而反之取 f(x)=x2+x,g(x)=2x,h(x)=x2+2 是偶函数,而 f(x),g(x)高考真题9高考真题均不是偶函数”,故选 B10(4 分)(2007全国卷)A3B4C5D6的展开式中,常数项为
13、 15,则 n=()【分析】利用二项展开式的通项公式求出第 r+1 项,令 x 的指数为 0 求出常数项,据 n 的特点求出 n 的值【解答】解:的展开式中,常数项为 15,则所以 n 可以被 3 整除,当 n=3 时,C31=315,当 n=6 时,C62=15,故选项为 D11(4 分)(2007全国卷)抛物线 y2=4x 的焦点为 F,准线为 l,经过 F 且斜率为的直线与抛物线在 x 轴上方的部分相交于点 A,AKl,垂足为 K,则AKF 的面积是()A4BCD8【分析】先根据抛物线方程求出焦点坐标和准线方程,进而可得到过 F 且斜率为的直线方程然后与抛物线联立可求得 A 的坐标,再由
14、 AKl,垂足为 K,可求得 K 的坐标,根据三角形面积公式可得到答案【解答】解:抛物线 y2=4x 的焦点 F(1,0),准线为 l:x=1,经过F且斜率为2),),的直线与抛物线在x轴上方的部分相交于点A(3,AKl,垂足为 K(1,2AKF 的面积是 4故选 C高考真题10高考真题12(4 分)(2007全国卷)函数(f x)=cos2x2cos2的一个单调增区间是()ABCD【分析】化简函数分别求出单调区间判定选项的正误【解答】解函数原函数看作 g(t)=t2t1,t=cosx,对于 g(t)=t2t1,当当当且故选 A时,g(t)为增函数,时,t=cosx 减函数,为关于 cosx
15、的二次函数,然后换元,=cos2xcosx1,时,g(t)为减函数,原函数此时是单调增,二、填空题(共二、填空题(共 4 4 小题,每小题小题,每小题 5 5 分,满分分,满分 2020 分)分)13(5 分)(2007全国卷)从班委会 5 名成员中选出 3 名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有36种(用数字作答)【分析】由题意知本题是一个有约束条件的排列组合问题,先从除甲与乙之外的其余3 人中选出1 人担任文娱委员,再从 4 人中选2 人担任学习委员和体育委员,写出即可【解答】解从班委会5 名成员中选出 3 名,分别担任班级学习委员、
16、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,先从其余 3 人中选出 1 人担任文娱委员,再从 4 人中选 2 人担任学习委员和体育委员,不同的选法共有 C31A42=343=36 种14(5 分)(2007全国卷)函数 y=f(x)的图象与函数 y=log3x(x0)的图高考真题11高考真题象关于直线 y=x 对称,则 f(x)=3x(xR)【分析】由题意推出 f(x)与函数 y=log3x(x0)互为反函数,求解即可【解答】解函数 y=f(x)的图象与函数 y=log3x(x0)的图象关于直线 y=x对称,则 f(x)与函数 y=log3x(x0)互为反函数,f(x)=3x(xR)故
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 全国 高考 数学 理科 试卷 全国卷 解析
限制150内