初二上册数学知识点总结(北师大版).pdf
《初二上册数学知识点总结(北师大版).pdf》由会员分享,可在线阅读,更多相关《初二上册数学知识点总结(北师大版).pdf(22页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、第一章初二上册数学知识点总结初二上册数学知识点总结(北师大版北师大版)第二章第二章勾股定理勾股定理1 1、勾股定理、勾股定理直角三角形两直角边 a;b 的平方和等于斜边 c 的平方;即a2b2 c22 2、勾股定理的逆定理、勾股定理的逆定理如果三角形的三边长 a;b;c 有关系a2b2 c2;那么这个三角形是直角三角形。3 3、勾股数、勾股数:满足a2b2 c2的三个正整数;称为勾股数。第三章第三章实数实数一、实数的概念及分类一、实数的概念及分类1 1、实数的分类、实数的分类正有理数有理数零有限小数和无限循环小数实数负有理数正无理数无理数无限不循环小数负无理数2 2、无理数:、无理数:无限不循
2、环小数叫做无理数。在理解无理数时;要抓住“无限不循环”这一时之;归纳起来有四类:1/22(1)开方开不尽的数;如7,32等;(2)有特定意义的数;如圆周率;或化简后含有 的数;如+8 等;3(3)有特定结构的数;如 0.1010010001等;(4)某些三角函数值;如 sin60o等二、实数的倒数、相反数和绝对值二、实数的倒数、相反数和绝对值1、相反数实数与它的相反数时一对数(只有符号不同的两个数叫做互为相反数;零的相反数是零);从数轴上看;互为相反数的两个数所对应的点关于原点对称;如果 a 与 b 互为相反数;则有 a+b=0;a=b;反之亦成立。2、绝对值在数轴上;一个数所对应的点与原点的
3、距离;叫做该数的绝对值。(|a|0)。零的绝对值是它本身;也可看成它的相反数;若|a|=a;则 a0;若|a|=-a;则 a0。3、倒数如果 a 与 b 互为倒数;则有 ab=1;反之亦成立。倒数等于本身的数是 1 和-1。零没有倒数。4、数轴规定了原点、正方向和单位长度的直线叫做数轴(画数轴时;要注意上述规定的三要素缺一不可)。解题时要真正掌握数形结合的思想;理解实数与数轴的2/22点是一一对应的;并能灵活运用。5、估算三、平方根、算数平方根和立方根三、平方根、算数平方根和立方根1、算术平方根:一般地;如果一个正数 x 的平方等于 a;即 x2=a;那么这个正数 x 就叫做 a 的算术平方根
4、。特别地;0的算术平方根是 0。表示方法:记作“a”;读作根号 a。性质:正数和零的算术平方根都只有一个;零的算术平方根是零。2、平方根:一般地;如果一个数 x 的平方等于 a;即 x2=a;那么这个数 x 就叫做 a 的平方根(或二次方根)。表示方法:正数 a 的平方根记做“根号 a”。性质:一个正数有两个平方根;它们互为相反数;零的平方根是零;负数没有平方根。开平方:求一个数 a 的平方根的运算;叫做开平方。注意a的双重非负性:a 0a”;读作“正、负3、立方根a 0一般地;如果一个数 x的立方等于a;即x3=a那么这个数x就叫做 a 的立方根(或三次方根)。3/22表示方法:记作3a性质
5、:一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零。注意:3 a 3a;这说明三次根号内的负号可以移到根号外面。四、实数大小的比较四、实数大小的比较1、实数比较大小:正数大于零;负数小于零;正数大于一切负数;数轴上的两个点所表示的数;右边的总比左边的大;两个负数;绝对值大的反而小。2、实数大小比较的几种常用方法(1)数轴比较:在数轴上表示的两个数;右边的数总比左边的数大。(2)求差比较:设 a、b 是实数;a b 0 a b,a b 0 a b,ab 0 a b(3)求 商 比 较 法:设a、b是 两 正 实数;a1 a b;a1 a b;a1 a b;bbb(4)绝对值比较
6、法:设 a、b 是两负实数;则a b a b。(5)平方法:设 a、b 是两负实数;则a2 b2 a b。五、算术平方根有关计算(二次根式)五、算术平方根有关计算(二次根式)1、含有二次根号“”;被开方数 a 必须是非负数。4/222、性质:(1)(a)2 a(a 0)(2)a2 a a(a 0)(3)(4)a(a 0)ab a b(a 0,b 0)(a b ab(a 0,b 0))aa(a 0,b 0)bb(aba(a 0,b 0))b3、运算结果若含有“a”形式;必须满足:(1)被开方数的因数是整数;因式是整式;(2)被开方数中不含能开得尽方的因数或因式六、实数的运算六、实数的运算(1 1
7、)六种运算:)六种运算:加、减、乘、除、乘方、开方(2 2)实数的运算顺序先算乘方和开方;再算乘除;最后算加减;如果有括号;就先算括号里面的。(3 3)运算律)运算律加法交换律加法结合律乘法交换律乘法结合律乘法对加法的分配律a b b a(a b)c a (b c)ab ba(ab)c a(bc)a(b c)ab ac5/22第四章第四章图形的平移与旋转图形的平移与旋转一、平移一、平移1、定义在平面内;将一个图形整体沿某方向移动一定的距离;这样的图形运动称为平移。2、性质平移前后两个图形是全等图形;对应点连线平行且相等;对应线段平行且相等;对应角相等。二、旋转二、旋转1、定义在平面内;将一个图
8、形绕某一定点沿某个方向转动一个角度;这样的图形运动称为旋转;这个定点称为旋转中心;转动的角叫做旋转角。2、性质旋转前后两个图形是全等图形;对应点到旋转中心的距离相等;对应点与旋转中心的连线所成的角等于旋转角。第五章第五章四边形性质探索四边形性质探索一、四边形的相关概念一、四边形的相关概念 1、四边形在同一平面内;由不在同一直线上的四条线段首尾顺次相接组成的图形叫做四边形。2、四边形具有不稳定性6/223、四边形的内角和定理及外角和定理四边形的内角和定理:四边形的内角和等于 360。四边形的外角和定理:四边形的外角和等于 360。推论:多 边形的内角 和定理:n 边形的内角和等 于(n 2)18
9、0;多边形的外角和定理:任意多边形的外角和等于360。6、设多边形的边数为 n;则多边形的对角线共有n(n 3)条。2从 n 边形的一个顶点出发能引(n-3)条对角线;将 n 边形分成(n-2)个三角形。二、平行四边形二、平行四边形 1、平行四边形的定义两组对边分别平行的四边形叫做平行四边形。2、平行四边形的性质(1)平行四边形的对边平行且相等。(2)平行四边形相邻的角互补;对角相等(3)平行四边形的对角线互相平分。(4)平行四边形是中心对称图形;对称中心是对角线的交点。常用点:(1)若一直线过平行四边形两对角线的交点;则这条直线被一组对边截下的线段的中点是对角线的交点;并且这条直线二等分此平
10、行四边形的面积。7/22(2)推论:夹在两条平行线间的平行线段相等。3、平行四边形的判定(1)定义:两组对边分别平行的四边形是平行四边形(2)定理 1:两组对角分别相等的四边形是平行四边形(3)定理 2:两组对边分别相等的四边形是平行四边形(4)定理 3:对角线互相平分的四边形是平行四边形(5)定理 4:一组对边平行且相等的四边形是平行四边形4、两条平行线的距离两条平行线中;一条直线上的任意一点到另一条直线的距离;叫做这两条平行线的距离。平行线间的距离处处相等。5、平行四边形的面积S平行四边形=底边长高=ah三、矩形三、矩形 1、矩形的定义有一个角是直角的平行四边形叫做矩形。2、矩形的性质(1
11、)矩形的对边平行且相等(2)矩形的四个角都是直角(3)矩形的对角线相等且互相平分(4)矩形既是中心对称图形又是轴对称图形;对称中心8/22是对角线的交点(对称中心到矩形四个顶点的距离相等);对称轴有两条;是对边中点连线所在的直线。3、矩形的判定(1)定义:有一个角是直角的平行四边形是矩形(2)定理 1:有三个角是直角的四边形是矩形(3)定理 2:对角线相等的平行四边形是矩形4、矩形的面积S矩形=长宽=ab四、菱形四、菱形 1、菱形的定义有一组邻边相等的平行四边形叫做菱形2、菱形的性质(1)菱形的四条边相等;对边平行(2)菱形的相邻的角互补;对角相等(3)菱形的对角线互相垂直平分;并且每一条对角
12、线平分一组对角(4)菱形既是中心对称图形又是轴对称图形;对称中心是对角线的交点(对称中心到菱形四条边的距离相等);对称轴有两条;是对角线所在的直线。3、菱形的判定(1)定义:有一组邻边相等的平行四边形是菱形(2)定理 1:四边都相等的四边形是菱形9/22(3)定理 2:对角线互相垂直的平行四边形是菱形4、菱形的面积S菱形=底边长高=两条对角线乘积的一半五、正方形五、正方形(310310 分)分)1、正方形的定义有一组邻边相等并且有一个角是直角的平行四边形叫做正方形。2、正方形的性质(1)正方形四条边都相等;对边平行(2)正方形的四个角都是直角(3)正方形的两条对角线相等;并且互相垂直平分;每一
13、条对角线平分一组对角(4)正方形既是中心对称图形又是轴对称图形;对称中心是对角线的交点;对称轴有四条;是对角线所在的直线和对边中点连线所在的直线。3、正方形的判定判定一个四边形是正方形的主要依据是定义;途径有两种:先证它是矩形;再证它是菱形。先证它是菱形;再证它是矩形。4、正方形的面积设正方形边长为 a;对角线长为 b10/22Sb2正方形=a22六、梯形六、梯形(一)1、梯形的相关概念一组对边平行而另一组对边不平行的四边形叫做梯形。梯形中平行的两边叫做梯形的底;通常把较短的底叫做上底;较长的底叫做下底。梯形中不平行的两边叫做梯形的腰。梯形的两底的距离叫做梯形的高。2、梯形的判定(1)定义:一
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 初二 上册 数学 知识点 总结 北师大
限制150内