中职 优化计算方法及其MATLAB程序实现第7章电子课件 高教版 .pdf
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_1.gif)
![资源得分’ title=](/images/score_05.gif)
《中职 优化计算方法及其MATLAB程序实现第7章电子课件 高教版 .pdf》由会员分享,可在线阅读,更多相关《中职 优化计算方法及其MATLAB程序实现第7章电子课件 高教版 .pdf(53页珍藏版)》请在淘文阁 - 分享文档赚钱的网站上搜索。
1、1/53JJIIJIBackClosezO9MATLABSy1?K2/53JJIIJIBackClose?KaA?zK,3Ok-?A.aK3,ew|(?uC?)?K.du|)?,?).u?K,n,(7.2)|g|;?m n)?,?ATA?,d?K(7.1)(|(7.2)?(7.3)3).Cholesky)ATAx=ATb,)?K(7.1)?Cholesky).7.1(Cholesky)A Rmn(m n)?,b Rm.?O?K(7.1)?4?)xLS.0,n?ATACholesky)ATA=LLT,Len?.1,g)Ly=ATb,LTx=y?K(7.1)?)xLS.e|MATLABXg?Cho
2、lesky)chol.m,?7.1?MATLABS,3,TS?.8/53JJIIJIBackCloseS7.1(7.1S)function x,res=nels(A,b)B=A*A;f=A*b;L=chol(B,lower);y=Lf;x=Ly;res=norm(b-A*x);7.1|S7.1)|Ax=b,A=2 3 4 54 3 2 14 5 6 79 5 7 24 2 5 3,x=x1x2x3x4,b=2022354250.)3MATLAB-IXe-:9/53JJIIJIBackClose A=2 3 4 5;4 3 2 1;4 5 6 7;9 5 7 2;4 2 5 3;b=20 22
3、35 42 50;x,res=nels(A,b)?x=45.4308-45.1654-30.942337.7731res=0.5883)?K(7.1)?QR).|QR10/53JJIIJIBackClose),(|?).,5|Ax=b,A Rmn(m n)?,b Rm.oAx=b QROx=b ROx=QTb.PQTb=(c1,c2,cn,cn+1,cm)T,KRx=(c1,cn)Tk)xLS.?x Rn,?Q?,kkAx bk22=?QROx QQTb?22=?ROx QTb?22=?Rx ?22+?cn+1.cm?22 c2n+1+c2m,11/53JJIIJIBackClosekAxLS
4、 bk22=?RxLS?22+?cn+1.cm?22=c2n+1+c2m.,xLS|Ax=b?).7.2(QR)A Rmn(m n)?,b Rm.?O?K(7.1)?4?)xLS.0,|MATLABXg?qr.mOX?A?QR)Q,R=qr(A).1,“)n?/|ROx=QTb,?)xLS.12/53JJIIJIBackClose7.2?MATLABSXe.S7.2(7.2S)function x,res=qrls(A,b)Q,R=qr(A);f=Q*b;x=Rf;res=norm(b-A*x);7.2|S7.2)7.1?|.)3MATLAB-IXe-:A=2 3 4 5;4 3 2 1;4
5、5 6 7;9 5 7 2;4 2 5 3;b=20 22 35 42 50;x,res=qrls(A,b)?13/53JJIIJIBackClosex=45.4308-45.1654-30.942337.7731res=0.58837.1.25?K=0?)5O?5?K?4?).MATLABXg?)?svd.m,|)?K?4?).?2_|(7.2)?)?-?14/53JJIIJIBackClosek?,?|)O?2_B?.ek?2_?.7.2?A Rmn,ekX Rnmv(1)AXA=A;(2)XAX=X;(3)(AX)T=AX;(4)(XA)T=XA.KX?A?2_,PA.e?n?)?5O2
6、_.n7.2?r(r 1)?m n?A?)A=UrOO OVT,15/53JJIIJIBackClose:U RmmV Rnn?;r=diag1,2,r,i 0(i=1,2,r)?A?.KA=V1rOOOUT.(7.4)y Moore-Penrose2_?,?y=y.?e?:(1)?|(7.2)k),X(xLS Rn,?kxLSk2=minAx=bkxk2,?xLS|(7.2)?K(7.1)?4?);(2)?|(7.2),X(xLS Rn,?kxLSk2=minminkAxbk2kxk2,16/53JJIIJIBackClose?xLS|(7.2)?K(7.1)?4?).ey/Xen.n7.3
7、XJ5|(7.2)k),K?4?)xLS,xLS=Ab.n7.4XJ5|(7.2),K?4?)xLS,xLS=Ab.?A Rmnr(m n)?)A=UVT,=rOO Orm r,rn r(7.5):U=?u1,u2,um?V=?v1,v2,vn?;17/53JJIIJIBackCloser=diag(1,2,r),1 2 r 0.Kdn7.2!n7.3n7.4xLS=Ab=V1rOOOUT=rXi=1uTibivi.(7.6)d,?)(7.5),d(7.6)N/?K(7.1)?4?)xLS.7.3|MATLABXg?)svd.m)|Ax=b,A=123414561567189101 11 12
8、 13,x=x1x2x3x4,b=1113151820.18/53JJIIJIBackClose)k,?XeMATLABS,ex73.m:%7.3A=1 2 3 4;1 4 5 6;1 5 6 7;1 8 9 10;1 11 12 13;b=11 13 15 18 20;m,n=size(A);x=zeros(n,1);U,S,V=svd(A);r=rank(S);for i=1:rx=x+(U(:,i)*b/S(i,i)*V(:,i);endxres=norm(b-A*x),?,3-I:19/53JJIIJIBackClose ex73?x=2.7533-2.41330.34003.0933
9、res=1.08637.25?K)5?KO?aK,3L?+k2?A?.?Xd,?zK20/53JJIIJIBackCloseLKKT5|-?X.?!?5?K?)95.7.2.1 Gauss-Newton5?Kx Rn,?kF(x)k2?,N?F:Rn RmY.5?K3?O!?7K?SKkX2?A.PF(x)=?F1(x),F2(x),Fm(x)?T,K5?KLminxRnf(x)=12kF(x)k2=12mXi=1F2i(x).(7.7)w,K(7.7)?zK,d,?zK?,X!?).uK21/53JJIIJIBackClose(7.7)?A5,e3?z?:,?aK?).uK(7.7),8If
10、?FHesse?Og(x):=f(x)=?12kF(x)k2?=J(x)TF(x)=mXi=1Fi(x)Fi(x),G(x):=2f(x)=mXi=1Fi(x)(Fi(x)T+mXi=1Fi(x)2Fi(x)=J(x)TJ(x)+mXi=1Fi(x)2Fi(x):=J(x)TJ(x)+S(x),J(x)=F0(x)=(F1(x),F2(x),Fm(x)T,22/53JJIIJIBackCloseS(x)=mXi=1Fi(x)2Fi(x).|.S“,?)5?K?S“xk+1=xk?JTkJk+Sk?1JTkFk,:Sk=S(xk);Jk=J(xk);Fk=F(xk).3IOb?e,N?T?5.:
11、S(x)2Fi(x)?O?.XJ?,B?)5?K?Gauss-NewtonS“xk+1=xk+dGNk,dGNk=?JTkJk?1JTkFk23/53JJIIJIBackCloseGauss-Newton.N?ydGNkzKmindRn12kF(xk)+Jkdk2?).eF(x)?Jacobi?,K?yGauss-Newtone.X?,e?,?5J?y.?XJ3|5K,K?Xe?5n.n7.5?Y8L(x0)k.,J(x)=F0(x)3L(x0)LipschitzYv5kJ(x)yk kyk,y Rn,(7.8):0.3Wolfe5Ke,=f(xk+kdk)6 fk+kgTkdk,g(xk+k
12、dk)Tdk gTkdk,(7.9)24/53JJIIJIBackClose:0 0?x L(x0),kJ(x)k 6.PkGauss-NewtondGNkKFgk?Y?.|5(7.8),kcosk=gTkdGNkkgkkkdGNkk=FTkJkdGNkkdGNkkkJTkFkk=kJkdGNkk2kdGNkkkJTkJkdGNkk2kdGNkk22kdGNkk2=22 0.dug(x)3L(x0)LipschitzY,Kd(7.9)?1?,?(1)gTkdk6 g(xk+kdk)gkTdk6 kLkdkk2.25/53JJIIJIBackClose?k 1LgTkdkkdkk2.“(7.9)
13、?1,?fk fk+1 kgTkdk 1 L(gTkdk)2kdkk2=1 Lkgkk2cos2k.k?,|fkNOke.,?Xk=1kgkk2cos2k 09?,?x,y N(x,),kkS(x)S(y)k 6 kx yk,kJ(x)TJ(x)J(y)TJ(y)k 6 kx yk,kJ(x)TJ(x)1 J(y)TJ(y)1k 6 kx yk.(7.10)duf(x)?Y,G(x)=J(x)TJ(x)+S(x)3N(x,)LipschitzY,?k?h Rn,kxk+h 27/53JJIIJIBackCloseN(x,),g(xk+h)=g(xk)+G(xk)h+O(khk2).(7.11)
14、duxk x,K?k,kxk,xk+1 N(x,).-ek=xk x,hk=xk+1 xk,Kg(x)=g(xk ek)=0.|(7.11),kg(xk)G(xk)ek+O(kekk2)=0,=JTkFk(JTkJk+Sk)ek+O(kekk2)=0.5?JTkFk=(JTkJk)(xk+1 xk)=JTkJkhk.28/53JJIIJIBackClose(JTkJk)1,khk ek(JTkJk)1Skek+(JTkJk)1O(kekk2)=0,xk+1 x=hk+ek=(JTkJk)1Skek+(JTkJk)1O(kekk2).?2-,kkxk+1 xk 6 k(JTkJk)1Skkkek
15、k+k(JTkJk)1k O(kekk2).duJ(x)TJ(x)13x?Y,?3k,kk(JTkJk)1k 6 2kJ(x)TJ(x)1k,(7.12)l?kxk+1 xk 6 k(JTkJk)1Skkkxk xk+O(kxk xk2).(7.13)29/53JJIIJIBackClosed(7.10)(7.12),?k(JTkJk)1Sk J(x)TJ(x)1S(x)k6 k(JTkJk)1kkSk S(x)k+k(JTkJk)1 J(x)TJ(x)1kkS(x)k6 2kJ(x)TJ(x)1kkxk xk+kS(x)kkxk xk=O(kxk x)k,=k(JTkJk)1Skk 6 kJ
16、(x)TJ(x)1S(x)k+k(JTkJk)1Sk J(x)TJ(x)1S(x)k=kJ(x)TJ(x)1S(x)k+O(kxk x)k.(7.14)(7.14)“(7.13)=?n?(.y.?30/53JJIIJIBackClose5 eK(7.7)vn7.6?)x?8I?,KS(x)=0,?(LS“:?x.?F(x)3):?0,du2f(x)?N?S(x),?JuGauss-Newtonk?J.7.2.2 L-M9MATLAByGauss-Newton3S“L?J(xk)?,?A.(J,Levenberg-Marquardt(L-M)L)ez?.5?|dk=arg mindRnkJkd+
- 配套讲稿:
如PPT文件的首页显示word图标,表示该PPT已包含配套word讲稿。双击word图标可打开word文档。
- 特殊限制:
部分文档作品中含有的国旗、国徽等图片,仅作为作品整体效果示例展示,禁止商用。设计者仅对作品中独创性部分享有著作权。
- 关 键 词:
- 中职 优化计算方法及其MATLAB程序实现第7章电子课件 高教版 优化 计算方法 及其 MATLAB 程序 实现 电子 课件 高教
![提示](https://www.taowenge.com/images/bang_tan.gif)
限制150内